R-S correspondence for the Hyper-octahedral group of type \(B_n\) - A different approach
In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type \(B_n\) on partitions of \((\frac{1}{2}r(r+1)+2n)\) whose \(2-\)core is \(\delta_r, \ r \geq 0\) where \(\delta_r\) is the partition with parts \((r,r-1,\ldots,0)\). We derive some combinatorial properties...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/837 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-837 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-8372018-03-21T11:52:32Z R-S correspondence for the Hyper-octahedral group of type \(B_n\) - A different approach Parvathi, M. Sivakumar, B. Tamilselvi, A. Robinson Schensted correspondence,Hyperoctahedral group of type \(B_n\), Domino tableau 05E10, 20C30 In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type \(B_n\) on partitions of \((\frac{1}{2}r(r+1)+2n)\) whose \(2-\)core is \(\delta_r, \ r \geq 0\) where \(\delta_r\) is the partition with parts \((r,r-1,\ldots,0)\). We derive some combinatorial properties associated with this correspondence. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/837 Algebra and Discrete Mathematics; Vol 6, No 1 (2007) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/837/368 Copyright (c) 2018 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
Robinson Schensted correspondence,Hyperoctahedral group of type \(B_n\) Domino tableau 05E10 20C30 |
spellingShingle |
Robinson Schensted correspondence,Hyperoctahedral group of type \(B_n\) Domino tableau 05E10 20C30 Parvathi, M. Sivakumar, B. Tamilselvi, A. R-S correspondence for the Hyper-octahedral group of type \(B_n\) - A different approach |
topic_facet |
Robinson Schensted correspondence,Hyperoctahedral group of type \(B_n\) Domino tableau 05E10 20C30 |
format |
Article |
author |
Parvathi, M. Sivakumar, B. Tamilselvi, A. |
author_facet |
Parvathi, M. Sivakumar, B. Tamilselvi, A. |
author_sort |
Parvathi, M. |
title |
R-S correspondence for the Hyper-octahedral group of type \(B_n\) - A different approach |
title_short |
R-S correspondence for the Hyper-octahedral group of type \(B_n\) - A different approach |
title_full |
R-S correspondence for the Hyper-octahedral group of type \(B_n\) - A different approach |
title_fullStr |
R-S correspondence for the Hyper-octahedral group of type \(B_n\) - A different approach |
title_full_unstemmed |
R-S correspondence for the Hyper-octahedral group of type \(B_n\) - A different approach |
title_sort |
r-s correspondence for the hyper-octahedral group of type \(b_n\) - a different approach |
description |
In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type \(B_n\) on partitions of \((\frac{1}{2}r(r+1)+2n)\) whose \(2-\)core is \(\delta_r, \ r \geq 0\) where \(\delta_r\) is the partition with parts \((r,r-1,\ldots,0)\). We derive some combinatorial properties associated with this correspondence. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2018 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/837 |
work_keys_str_mv |
AT parvathim rscorrespondenceforthehyperoctahedralgroupoftypebnadifferentapproach AT sivakumarb rscorrespondenceforthehyperoctahedralgroupoftypebnadifferentapproach AT tamilselvia rscorrespondenceforthehyperoctahedralgroupoftypebnadifferentapproach |
first_indexed |
2024-04-12T06:25:52Z |
last_indexed |
2024-04-12T06:25:52Z |
_version_ |
1796109212722397184 |