R-S correspondence for the Hyper-octahedral group of type \(B_n\) - A different approach
In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type \(B_n\) on partitions of \((\frac{1}{2}r(r+1)+2n)\) whose \(2-\)core is \(\delta_r, \ r \geq 0\) where \(\delta_r\) is the partition with parts \((r,r-1,\ldots,0)\). We derive some combinatorial properties...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/837 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsБудьте першим, хто залишить коментар!