Self-similar groups and finite Gelfand pairs
We study the Basilica group \(B\), the iterated monodromy group \(I\) of the complex polynomial \(z^2+i\) and the Hanoi Towers group \(H^{(3)}\). The first two groups act on the binary rooted tree, the third one on the ternary rooted tree. We prove that the action of \(B, I\) and \(H^{(3)}\) on each...
Saved in:
Date: | 2018 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Lugansk National Taras Shevchenko University
2018
|
Subjects: | |
Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/843 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Algebra and Discrete Mathematics |