Arithmetic properties of exceptional lattice paths
For a fixed real number \(\rho>0\), let \(L\) be an affine line of slope \(\rho^{-1}\) in \(\mathbb{R}^2\). We show that the closest approximation of \(L\) by a path \(P\) in \(\mathbb{Z}^2\) is unique, except in one case, up to integral translation. We study this exceptional case. For irrat...
Збережено в:
Дата: | 2018 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/901 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsРезюме: | For a fixed real number \(\rho>0\), let \(L\) be an affine line of slope \(\rho^{-1}\) in \(\mathbb{R}^2\). We show that the closest approximation of \(L\) by a path \(P\) in \(\mathbb{Z}^2\) is unique, except in one case, up to integral translation. We study this exceptional case. For irrational \(\rho\), the projection of \(P\) to \(L\) yields two quasicrystallographic tilings in the sense of Lunnon and Pleasants [5]. If \(\rho\) satisfies an equation \(x^2=mx+1\) with \(m\in\mathbb{Z}\), both quasicrystals are mapped to each other by a substitution rule. For rational \(\rho\), we characterize the periodic parts of \(P\) by geometric and arithmetic properties, and exhibit a relationship to the hereditary algebras \(H_{\rho}(K)\) over a field \(K\) introduced in a recent proof of a conjecture of Roiter. |
---|