Arithmetic properties of exceptional lattice paths

For a fixed real number \(\rho>0\),  let \(L\) be an affine line of slope \(\rho^{-1}\) in \(\mathbb{R}^2\). We show that the closest approximation of \(L\) by a path \(P\) in \(\mathbb{Z}^2\) is unique, except in one case, up to integral translation. We study this exceptional case. For irrat...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Author: Rump, Wolfgang
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/901
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics