Gorenstein matrices

Let \(A=(a_{ij})\) be an integral matrix. We say that  \(A\) is \((0, 1, 2)\)-matrix if \(a_{ij}\in \{0, 1, 2\}\). There exists the Gorenstein \((0, 1, 2)\)-matrix for any permutation \(\sigma \) on the set \(\{1, \ldots , n\}\) without fixed elements. For every positive integer \(n\) there exists t...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Dokuchaev, M. A., Kirichenko, V. V., Zelensky, A. V., Zhuravlev, V. N.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/913
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics