Gorenstein matrices

Let \(A=(a_{ij})\) be an integral matrix. We say that  \(A\) is \((0, 1, 2)\)-matrix if \(a_{ij}\in \{0, 1, 2\}\). There exists the Gorenstein \((0, 1, 2)\)-matrix for any permutation \(\sigma \) on the set \(\{1, \ldots , n\}\) without fixed elements. For every positive integer \(n\) there exists t...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Dokuchaev, M. A., Kirichenko, V. V., Zelensky, A. V., Zhuravlev, V. N.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/913
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-913
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-9132018-03-21T07:18:38Z Gorenstein matrices Dokuchaev, M. A. Kirichenko, V. V. Zelensky, A. V. Zhuravlev, V. N. exponent matrix; Gorenstein tiled order, Gorenstein matrix, admissible quiver, doubly stochastic matrix 16P40; 16G10 Let \(A=(a_{ij})\) be an integral matrix. We say that  \(A\) is \((0, 1, 2)\)-matrix if \(a_{ij}\in \{0, 1, 2\}\). There exists the Gorenstein \((0, 1, 2)\)-matrix for any permutation \(\sigma \) on the set \(\{1, \ldots , n\}\) without fixed elements. For every positive integer \(n\) there exists the Gorenstein cyclic \((0, 1, 2)\)-matrix \(A_{n}\) such that \(inx\,A_{n}=2\).If a  Latin square \({\mathcal L}_{n}\) with a first row and first column \((0, 1,\ldots n-1)\) is an exponent matrix, then \(n=2^{m}\) and \({\mathcal L}_{n}\) is the Cayley table of a direct product of \(m\) copies of the cyclic group of order 2. Conversely, the Cayley table \({{\mathcal E}}_{m}\) of the elementary abelian group \(G_{m}=(2)\times\ldots \times (2)\)  of  order \(2^{m}\) is a Latin square and a Gorenstein symmetric matrix with  first row \((0, 1,\ldots , 2^{m}-1)\) and\(\sigma({{\mathcal E}}_{m})=\begin{pmatrix} 1&2&3&\ldots &2^{m}-1&2^{m}\\ 2^{m}&2^{m}-1&2^{m}-2&\ldots & 2&1\end{pmatrix}.\) Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/913 Algebra and Discrete Mathematics; Vol 4, No 1 (2005) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/913/442 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-03-21T07:18:38Z
collection OJS
language English
topic exponent matrix; Gorenstein tiled order
Gorenstein matrix
admissible quiver
doubly stochastic matrix
16P40
16G10
spellingShingle exponent matrix; Gorenstein tiled order
Gorenstein matrix
admissible quiver
doubly stochastic matrix
16P40
16G10
Dokuchaev, M. A.
Kirichenko, V. V.
Zelensky, A. V.
Zhuravlev, V. N.
Gorenstein matrices
topic_facet exponent matrix; Gorenstein tiled order
Gorenstein matrix
admissible quiver
doubly stochastic matrix
16P40
16G10
format Article
author Dokuchaev, M. A.
Kirichenko, V. V.
Zelensky, A. V.
Zhuravlev, V. N.
author_facet Dokuchaev, M. A.
Kirichenko, V. V.
Zelensky, A. V.
Zhuravlev, V. N.
author_sort Dokuchaev, M. A.
title Gorenstein matrices
title_short Gorenstein matrices
title_full Gorenstein matrices
title_fullStr Gorenstein matrices
title_full_unstemmed Gorenstein matrices
title_sort gorenstein matrices
description Let \(A=(a_{ij})\) be an integral matrix. We say that  \(A\) is \((0, 1, 2)\)-matrix if \(a_{ij}\in \{0, 1, 2\}\). There exists the Gorenstein \((0, 1, 2)\)-matrix for any permutation \(\sigma \) on the set \(\{1, \ldots , n\}\) without fixed elements. For every positive integer \(n\) there exists the Gorenstein cyclic \((0, 1, 2)\)-matrix \(A_{n}\) such that \(inx\,A_{n}=2\).If a  Latin square \({\mathcal L}_{n}\) with a first row and first column \((0, 1,\ldots n-1)\) is an exponent matrix, then \(n=2^{m}\) and \({\mathcal L}_{n}\) is the Cayley table of a direct product of \(m\) copies of the cyclic group of order 2. Conversely, the Cayley table \({{\mathcal E}}_{m}\) of the elementary abelian group \(G_{m}=(2)\times\ldots \times (2)\)  of  order \(2^{m}\) is a Latin square and a Gorenstein symmetric matrix with  first row \((0, 1,\ldots , 2^{m}-1)\) and\(\sigma({{\mathcal E}}_{m})=\begin{pmatrix} 1&2&3&\ldots &2^{m}-1&2^{m}\\ 2^{m}&2^{m}-1&2^{m}-2&\ldots & 2&1\end{pmatrix}.\)
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/913
work_keys_str_mv AT dokuchaevma gorensteinmatrices
AT kirichenkovv gorensteinmatrices
AT zelenskyav gorensteinmatrices
AT zhuravlevvn gorensteinmatrices
first_indexed 2025-07-17T10:31:45Z
last_indexed 2025-07-17T10:31:45Z
_version_ 1837890141447782400