Minimax sums of posets and the quadratic Tits form

Let \(S\) be an infinite poset (partially ordered set) and \(\mathbb{Z}_0^{S\cup{0}}\) the subset of the cartesian product \(\mathbb{Z}^{S\cup{0}}\) consisting of all vectors \(z=(z_i)\) with finite number of nonzero coordinates. We call the quadratic Tits form of \(S\)  (by analogy with the case of...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Bondarenko, Vitalij M., Polishchuk, Andrej M.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/978
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-978
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-9782018-05-14T08:03:48Z Minimax sums of posets and the quadratic Tits form Bondarenko, Vitalij M. Polishchuk, Andrej M. poset, minimax sum, the rank of a sum, the Tits form 15A, 16G Let \(S\) be an infinite poset (partially ordered set) and \(\mathbb{Z}_0^{S\cup{0}}\) the subset of the cartesian product \(\mathbb{Z}^{S\cup{0}}\) consisting of all vectors \(z=(z_i)\) with finite number of nonzero coordinates. We call the quadratic Tits form of \(S\)  (by analogy with the case of a finite poset) the form \(q_S:\mathbb{Z}_0^{S\cup{0}} \to \mathbb{Z}\) defined by the equality \(q_S(z)=z_0^2+\sum_{i\in S} z_i^2 +\sum_{i<j, i,j\in S}z_iz_j-z_0\sum_{i\in S}z_i\). In this paper we study the structure of infinite posets with positive Tits form. In particular,  there arise posets of specific form which we call minimax sums of posets. Lugansk National Taras Shevchenko University 2018-05-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/978 Algebra and Discrete Mathematics; Vol 3, No 1 (2004) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/978/507 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic poset
minimax sum
the rank of a sum
the Tits form
15A
16G
spellingShingle poset
minimax sum
the rank of a sum
the Tits form
15A
16G
Bondarenko, Vitalij M.
Polishchuk, Andrej M.
Minimax sums of posets and the quadratic Tits form
topic_facet poset
minimax sum
the rank of a sum
the Tits form
15A
16G
format Article
author Bondarenko, Vitalij M.
Polishchuk, Andrej M.
author_facet Bondarenko, Vitalij M.
Polishchuk, Andrej M.
author_sort Bondarenko, Vitalij M.
title Minimax sums of posets and the quadratic Tits form
title_short Minimax sums of posets and the quadratic Tits form
title_full Minimax sums of posets and the quadratic Tits form
title_fullStr Minimax sums of posets and the quadratic Tits form
title_full_unstemmed Minimax sums of posets and the quadratic Tits form
title_sort minimax sums of posets and the quadratic tits form
description Let \(S\) be an infinite poset (partially ordered set) and \(\mathbb{Z}_0^{S\cup{0}}\) the subset of the cartesian product \(\mathbb{Z}^{S\cup{0}}\) consisting of all vectors \(z=(z_i)\) with finite number of nonzero coordinates. We call the quadratic Tits form of \(S\)  (by analogy with the case of a finite poset) the form \(q_S:\mathbb{Z}_0^{S\cup{0}} \to \mathbb{Z}\) defined by the equality \(q_S(z)=z_0^2+\sum_{i\in S} z_i^2 +\sum_{i<j, i,j\in S}z_iz_j-z_0\sum_{i\in S}z_i\). In this paper we study the structure of infinite posets with positive Tits form. In particular,  there arise posets of specific form which we call minimax sums of posets.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/978
work_keys_str_mv AT bondarenkovitalijm minimaxsumsofposetsandthequadratictitsform
AT polishchukandrejm minimaxsumsofposetsandthequadratictitsform
first_indexed 2024-04-12T06:26:24Z
last_indexed 2024-04-12T06:26:24Z
_version_ 1796109169644797952