Packing convex homothetic polytopes into a cuboid
This paper deals with the optimization problem of packing a given set of homothetical arbitrarily oriented convex polytopes without their overlapping in a linear parallelepiped of minimal volume. Phi-functions are proposed to be used as a constructive means of the mathematical modeling of a given pr...
Saved in:
| Date: | 2018 |
|---|---|
| Main Authors: | Stoyan, Yu. G., Chugay, A. M. |
| Format: | Article |
| Language: | English Ukrainian |
| Published: |
Інститут енергетичних машин і систем ім. А. М. Підгорного Національної академії наук України
2018
|
| Subjects: | |
| Online Access: | https://journals.uran.ua/jme/article/view/135431 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Energy Technologies & Resource Saving |
Institution
Energy Technologies & Resource SavingSimilar Items
-
Packing convex homothetic polytopes into a cuboid
by: Stoyan, Yu. G., et al.
Published: (2018) -
Optimal packing of convex polytopes using quasi-phi-functions
by: Pankratov, A. V., et al.
Published: (2015) -
Optimal packing of convex polytopes using quasi-phi-functions
by: Pankratov, A. V., et al.
Published: (2015) -
Solving the problem of optimal packing of homothetic ellipsoids into a container of minimal volume
by: Хлуд, О. М.
Published: (2016) -
Solving the problem of optimal packing of homothetic ellipsoids into a container of minimal volume
by: Хлуд, О. М.
Published: (2016)