Spline-interlineation in building of optimal by exactness cubature formula for the exact evaluating of 3D Fourier’s coefficients on one differential class
The formulas of the evaluating of 3D Fourier’s coefficients with using spline-interlineation оn the class of function with constant derivatives are considered. Information about functions is a set of traces of functions on the perpendicular lines. This formulas are optimal by exactness
Saved in:
| Date: | 2016 |
|---|---|
| Main Authors: | Литвин, О. М., Нечуйвітер, О. П. |
| Format: | Article |
| Language: | Ukrainian |
| Published: |
Інститут енергетичних машин і систем ім. А. М. Підгорного Національної академії наук України
2016
|
| Subjects: | |
| Online Access: | https://journals.uran.ua/jme/article/view/74738 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Energy Technologies & Resource Saving |
Institution
Energy Technologies & Resource SavingSimilar Items
-
Spline-interlineation in building of optimal by exactness cubature formula for the exact evaluating of 3D Fourier’s coefficients on one differential class
by: Литвин, О. М., et al.
Published: (2016) -
The estimations of error of approaching Fourier's coefficients of two variables by the cubature formula on the class of differentiable functions
by: Литвин, О. М., et al.
Published: (2016) -
The estimations of error of approaching Fourier's coefficients of two variables by the cubature formula on the class of differentiable functions
by: Литвин, О. М., et al.
Published: (2016) -
Spline-interlineation in building of optimal by exactness cubature formula for the exact evaluating of 3D Fourier's coefficients on one differential class
by: O. M. Lytvyn, et al.
Published: (2011) -
Modification of the family three-point iterative method for refinement of simple roots of monotonic nonsmooth function
by: Шелудько, Г. А., et al.
Published: (2015)