Властивості композитів поліетилен–вуглецеві нанотрубки
The production of stable dispersions of carbon nanotubes (CNTs), synthesized by CVD, in different liquids, is one of the methods of preparation of CNTs for introduction into polymeric matrix. The aim of this work is to produce composites of polyethylene (PE) – CNT, and the study of their structural...
Saved in:
| Date: | 2017 |
|---|---|
| Main Authors: | , , , |
| Format: | Article |
| Language: | Ukrainian |
| Published: |
Chuiko Institute of Surface Chemistry National Academy of Sciences of Ukraine
2017
|
| Subjects: | |
| Online Access: | https://www.cpts.com.ua/index.php/cpts/article/view/419 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Chemistry, Physics and Technology of Surface |
Institution
Chemistry, Physics and Technology of Surface| id |
oai:ojs.pkp.sfu.ca:article-419 |
|---|---|
| record_format |
ojs |
| institution |
Chemistry, Physics and Technology of Surface |
| baseUrl_str |
|
| datestamp_date |
2022-06-29T10:14:56Z |
| collection |
OJS |
| language |
Ukrainian |
| topic |
вуглецеві нанотрубки поліетилен нанокомпозити ступінь кристалічності електропровідність термодинамічні властивості поріг протікання |
| spellingShingle |
вуглецеві нанотрубки поліетилен нанокомпозити ступінь кристалічності електропровідність термодинамічні властивості поріг протікання Sementsov, Yu. I. Makhno, S. N. Zhuravsky, S. V. Kartel, M. T. Властивості композитів поліетилен–вуглецеві нанотрубки |
| topic_facet |
carbon nanotubes polyethylene nanocomposites degree of crystallinity electroconductivity thermodynamic properties percolation threshold вуглецеві нанотрубки поліетилен нанокомпозити ступінь кристалічності електропровідність термодинамічні властивості поріг протікання углеродные нанотрубки полиэтилен нанокомпозиты степень кристалличности электропроводность термодинамические свойства порог протекания |
| format |
Article |
| author |
Sementsov, Yu. I. Makhno, S. N. Zhuravsky, S. V. Kartel, M. T. |
| author_facet |
Sementsov, Yu. I. Makhno, S. N. Zhuravsky, S. V. Kartel, M. T. |
| author_sort |
Sementsov, Yu. I. |
| title |
Властивості композитів поліетилен–вуглецеві нанотрубки |
| title_short |
Властивості композитів поліетилен–вуглецеві нанотрубки |
| title_full |
Властивості композитів поліетилен–вуглецеві нанотрубки |
| title_fullStr |
Властивості композитів поліетилен–вуглецеві нанотрубки |
| title_full_unstemmed |
Властивості композитів поліетилен–вуглецеві нанотрубки |
| title_sort |
властивості композитів поліетилен–вуглецеві нанотрубки |
| title_alt |
Properties of polyethylene–carbon nanotubes composites Свойства композитов полиэтилен–углеродные нанотрубки |
| description |
The production of stable dispersions of carbon nanotubes (CNTs), synthesized by CVD, in different liquids, is one of the methods of preparation of CNTs for introduction into polymeric matrix. The aim of this work is to produce composites of polyethylene (PE) – CNT, and the study of their structural characteristics, mechanical, thermodynamic, and kinetic properties as dependent on the concentration of multi-walled CNTs and the preliminary dispersion by several methods. Multi-walled CNTs were synthesized by catalytic pyrolysis (CCVD) using iron-containing catalyst in admixture with pyrogenic silica (grade A 300), which was prepared by coprecipitation of hydroxides of aluminum, magnesium and divalent iron. CNTs with a diameter of 10–20 nm were grown in a reactor with a volume of 24 dm3 with a smooth mixing of the catalyst layers due to rotation of the reactor. Deagglomeration of CNTs was carried out by processing in an ultrasonic dispergator or in a device that combines the cavitation mixing and shear deformation in aqueous solutions of different composition. Composite samples of the of PE–CNT with different concentration of the filler obtained by hot pressing at the temperature of 140 °C and the pressure of 5 MPa of polyethylene powders. Their surface was pre-deposited CNTs from stable aqueous dispersions. The structural characteristics of the CNTs and the composite of PE–CNTs is determined by the methods of transmission electron microscopy (JEM-100CXII), X-ray diffraction (DRON-3M, ?Со = 0.179 nm). Structural and phase transitions and the processes of destruction of polymer composites in air are investigated by methods of DTA and DTG on a derivatograph Q 1500 D (Hungary). Electric conductivity at low frequencies (0.1, 1 and 10 kHz) was measured by double contact method with an immittancemeter E7-14. The frequency dependence of complex electric conductivity of the composites was evaluated from calculations of the impedance spectra in the frequency range 10-2–106 Hz obtained by an impedance spectrometer Solartron SI 1260. The carbon nanotubes (CNTS) introduction in a matrix of polyethylene in small amounts (up to 5 wt. %) leads to a nonmonotonic change of the degree of crystallinity of the matrix. Their electrophysical and thermodynamic properties were studied. The percolation threshold in systems PE–CNTs from certain experimental data on the electrical conductivity is in the range 0.0015–0.0020 in volume. The content CNT to 2 % increases the temperature of the thermal oxidative degradation of the polymer by almost 60 °C. Influence of CNTs on the structure and properties of the composite is the more significant, the greater the degree of CNTs deagglomeration. |
| publisher |
Chuiko Institute of Surface Chemistry National Academy of Sciences of Ukraine |
| publishDate |
2017 |
| url |
https://www.cpts.com.ua/index.php/cpts/article/view/419 |
| work_keys_str_mv |
AT sementsovyui propertiesofpolyethylenecarbonnanotubescomposites AT makhnosn propertiesofpolyethylenecarbonnanotubescomposites AT zhuravskysv propertiesofpolyethylenecarbonnanotubescomposites AT kartelmt propertiesofpolyethylenecarbonnanotubescomposites AT sementsovyui svojstvakompozitovpoliétilenuglerodnyenanotrubki AT makhnosn svojstvakompozitovpoliétilenuglerodnyenanotrubki AT zhuravskysv svojstvakompozitovpoliétilenuglerodnyenanotrubki AT kartelmt svojstvakompozitovpoliétilenuglerodnyenanotrubki AT sementsovyui vlastivostíkompozitívpolíetilenvuglecevínanotrubki AT makhnosn vlastivostíkompozitívpolíetilenvuglecevínanotrubki AT zhuravskysv vlastivostíkompozitívpolíetilenvuglecevínanotrubki AT kartelmt vlastivostíkompozitívpolíetilenvuglecevínanotrubki |
| first_indexed |
2025-07-22T19:32:55Z |
| last_indexed |
2025-09-24T16:59:15Z |
| _version_ |
1844168276666482688 |
| spelling |
oai:ojs.pkp.sfu.ca:article-4192022-06-29T10:14:56Z Properties of polyethylene–carbon nanotubes composites Свойства композитов полиэтилен–углеродные нанотрубки Властивості композитів поліетилен–вуглецеві нанотрубки Sementsov, Yu. I. Makhno, S. N. Zhuravsky, S. V. Kartel, M. T. carbon nanotubes polyethylene nanocomposites degree of crystallinity electroconductivity thermodynamic properties percolation threshold вуглецеві нанотрубки поліетилен нанокомпозити ступінь кристалічності електропровідність термодинамічні властивості поріг протікання углеродные нанотрубки полиэтилен нанокомпозиты степень кристалличности электропроводность термодинамические свойства порог протекания The production of stable dispersions of carbon nanotubes (CNTs), synthesized by CVD, in different liquids, is one of the methods of preparation of CNTs for introduction into polymeric matrix. The aim of this work is to produce composites of polyethylene (PE) – CNT, and the study of their structural characteristics, mechanical, thermodynamic, and kinetic properties as dependent on the concentration of multi-walled CNTs and the preliminary dispersion by several methods. Multi-walled CNTs were synthesized by catalytic pyrolysis (CCVD) using iron-containing catalyst in admixture with pyrogenic silica (grade A 300), which was prepared by coprecipitation of hydroxides of aluminum, magnesium and divalent iron. CNTs with a diameter of 10–20 nm were grown in a reactor with a volume of 24 dm3 with a smooth mixing of the catalyst layers due to rotation of the reactor. Deagglomeration of CNTs was carried out by processing in an ultrasonic dispergator or in a device that combines the cavitation mixing and shear deformation in aqueous solutions of different composition. Composite samples of the of PE–CNT with different concentration of the filler obtained by hot pressing at the temperature of 140 °C and the pressure of 5 MPa of polyethylene powders. Their surface was pre-deposited CNTs from stable aqueous dispersions. The structural characteristics of the CNTs and the composite of PE–CNTs is determined by the methods of transmission electron microscopy (JEM-100CXII), X-ray diffraction (DRON-3M, ?Со = 0.179 nm). Structural and phase transitions and the processes of destruction of polymer composites in air are investigated by methods of DTA and DTG on a derivatograph Q 1500 D (Hungary). Electric conductivity at low frequencies (0.1, 1 and 10 kHz) was measured by double contact method with an immittancemeter E7-14. The frequency dependence of complex electric conductivity of the composites was evaluated from calculations of the impedance spectra in the frequency range 10-2–106 Hz obtained by an impedance spectrometer Solartron SI 1260. The carbon nanotubes (CNTS) introduction in a matrix of polyethylene in small amounts (up to 5 wt. %) leads to a nonmonotonic change of the degree of crystallinity of the matrix. Their electrophysical and thermodynamic properties were studied. The percolation threshold in systems PE–CNTs from certain experimental data on the electrical conductivity is in the range 0.0015–0.0020 in volume. The content CNT to 2 % increases the temperature of the thermal oxidative degradation of the polymer by almost 60 °C. Influence of CNTs on the structure and properties of the composite is the more significant, the greater the degree of CNTs deagglomeration. Введение углеродных нанотрубок (УНТ) в матрицу полиэтилена в небольших количествах (до 5 масс. %) приводит к немонотонному изменению степени кристалличности матрицы и исследованных электрофизических и термодинамических свойств. Порог протекания в системах полиэтилен–ВНТ, определенный из экспериментальных данных по электропроводности, находится в пределах 0.0015–0.0020 в объемных долях. Содержание УНТ до 2 % повышает температуру термоокислительной деструкции полимера почти на 60 °С. Влияние УНТ на структуру и свойства композита тем существеннее, чем больше степень деагломерации УНТ. Включення вуглецевих нанотрубок (ВНТ) в матрицю поліетилену в невеликих кількостях (до 5 мас. %) призводить до немонотонної зміни ступеня кристалічності матриці та досліджених електрофізичних і термодинамічних властивостей. Поріг протікання в системах поліетилен–ВНТ, визначений за експериментальними даними електропровідності, знаходиться в межах 0.0015–0.0020 в об’ємних частках. Вміст ВНТ до 2 % підвищує температуру термоокиснювальної деструкції полімера майже на 60 °С. Вплив ВНТ на структуру та властивості композиту тим суттєвіший, чим більший ступінь деагломерації ВНТ Chuiko Institute of Surface Chemistry National Academy of Sciences of Ukraine 2017-05-19 Article Article application/pdf https://www.cpts.com.ua/index.php/cpts/article/view/419 10.15407/hftp08.02.107 Chemistry, Physics and Technology of Surface; Vol. 8 No. 2 (2017): Chemistry, Physics and Technology of Surface / Himia, Fizika ta Tehnologia Poverhni; 107-119 Химия, физика и технология поверхности; Том 8 № 2 (2017): Химия, физика и технология поверхности; 107-119 Хімія, фізика та технологія поверхні; Том 8 № 2 (2017): Хімія, фізика та технологія поверхні; 107-119 2518-1238 2079-1704 10.15407/hftp08.02 uk https://www.cpts.com.ua/index.php/cpts/article/view/419/417 Copyright (c) 2017 Yu. I. Sementsov, S. N. Makhno, S. V. Zhuravsky, M. T. Kartel |