Хіміко-фізичні особливості нафтодеструктувального сорбента на основі біовугілля
The main task and relevance of this work are to develop the most effective sorbents for cleaning oil pollution or accidental oil spills. A generalized criterion for evaluating the effectiveness of a sorbent is the local availability and fast renewability of raw materials for biochar.The features of...
Збережено в:
| Дата: | 2023 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | Англійська |
| Опубліковано: |
Chuiko Institute of Surface Chemistry National Academy of Sciences of Ukraine
2023
|
| Теми: | |
| Онлайн доступ: | https://www.cpts.com.ua/index.php/cpts/article/view/678 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Chemistry, Physics and Technology of Surface |
Репозитарії
Chemistry, Physics and Technology of Surface| Резюме: | The main task and relevance of this work are to develop the most effective sorbents for cleaning oil pollution or accidental oil spills. A generalized criterion for evaluating the effectiveness of a sorbent is the local availability and fast renewability of raw materials for biochar.The features of obtaining biochar from cellulose-containing plant raw materials of corn cobs are described. The effect was studied of the pyrolysis conditions of the selected plant material on the physicochemical properties of biochar, which are responsible for the intermolecular interaction of the sorbent with the adsorbed substance and for immobilization and viability of oil degrading bacteria, which indicates the possibility to control the properties of oil destructive sorbent at the production stage. The optimal mode of carbonization of such raw materials has been worked out to obtain a sorbent with porosity and chemical compatibility with oil-degrading bacteria.Cultural cultivation for immobilization of oil-degrading bacteria was carried out in a nutrient medium and a concentrate was prepared. It is shown that biochar with oil-oxidizing microorganisms fixed on its surface has significant sorption and destructive properties. |
|---|