Особенности проявления постгипертонического лизиса эритроцитов некоторых млекопитающих

The erythrocyte sensitivity of some mammalian species (human, rat, rabbit) to posthypertonic lysis effect when varying NaCl concentration in dehydration medium, cell incubation duration and temperature was studied. We demonstrated here a determining role of dehydration stage (compared to rehydration...

Full description

Saved in:
Bibliographic Details
Date:2016
Main Authors: Semionova, Elena A., Yershova, Nataliya A., Yershov, Sergey S., Orlova, Nataliya V., Shpakova, Nataliya M.
Format: Article
Language:English
Published: Publishing House ‘Akademperiodyka’ of the National Academy of Sciences of Ukraine; Institute for Problems of Cryobiology and Cryomedicine 2016
Subjects:
Online Access:https://cryo.org.ua/journal/index.php/probl-cryobiol-cryomed/article/view/818
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Problems of Cryobiology and Cryomedicine

Institution

Problems of Cryobiology and Cryomedicine
Description
Summary:The erythrocyte sensitivity of some mammalian species (human, rat, rabbit) to posthypertonic lysis effect when varying NaCl concentration in dehydration medium, cell incubation duration and temperature was studied. We demonstrated here a determining role of dehydration stage (compared to rehydration one) for posthypertonic lysis development in mammalian erythrocytes, since the salt concentration in hypertonic medium and incubation duration in it determined the level of cell hemolysis. The loss of potassium cations by human and rabbit cells, depending on salt concentration in the medium was revealed at dehydration stage. The level of posthypertonic lysis in human, rat and rabbit erythrocytes was established as determined by experimental temperature conditions. Values of posthypertonic lysis of mammalian erythrocytes are lower at0°C, than at37°C, and this feature is much pronounced for animal cells. The results of comparative analysis of cell response to posthypertonic lysis effect showed rabbit erythrocytes to have the maximum resistance, and the minimum one was in rat cells. Probl Cryobiol Cryomed 2016; 26(1):73-83.