МОДЕЛЮВАННЯ МІКРОХОЛОДИЛЬНИКІВ З ЕФЕКТОМ ДЖОУЛЯ–ТОМСОНА

The principle of operation and design of microrefrigerators (MRCs) with the Joule-Thomson effect for cooling microelectronics and infrared sensors are considered. The organization of countercurrent heat exchange between a direct compressed gas flow to the throttle and a cooled expanded gas flow afte...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автори: Krukovsky, P.G., Tkach, V.M.
Формат: Стаття
Мова:Українська
Опубліковано: Institute of Engineering Thermophysics of NAS of Ukraine 2025
Онлайн доступ:https://ihe.nas.gov.ua/index.php/journal/article/view/650
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Thermophysics and Thermal Power Engineering

Репозитарії

Thermophysics and Thermal Power Engineering
_version_ 1856543879430406144
author Krukovsky, P.G.
Tkach, V.M.
author_facet Krukovsky, P.G.
Tkach, V.M.
author_sort Krukovsky, P.G.
baseUrl_str
collection OJS
datestamp_date 2026-01-01T09:32:44Z
description The principle of operation and design of microrefrigerators (MRCs) with the Joule-Thomson effect for cooling microelectronics and infrared sensors are considered. The organization of countercurrent heat exchange between a direct compressed gas flow to the throttle and a cooled expanded gas flow after the throttle can reach cryogenic temperatures. The last decades have been devoted to the choice of the design of such MRCs, as well as the development of mathematical models and computer programs to select the optimal parameters of these designs. Based on the miniature dimensions of the MRC itself (3-15 mm in diameter and 3-10 cm in length) and individual parts (fractions of mm) of the heat exchanger. The cooling capacity characteristic of such MRCs is also small and lies in the range of 1-4 watts and depends on the pressure level at the MRC inlet, and the rate of its cooling (self-cooling) reaches several seconds. The operating temperature of the MRC depends on the type of working fluid, for example, nitrogen to reach the level of -196 °C. To ensure minimum working fluid consumption in the MCC, there is a throttle microvalve, which is self-regulating depending on the temperature of the working fluid behind the nozzle. It is concluded that modern modeling is an important tool for detailed analysis of the thermo-gas-dynamic state of the MCC with a Dewar vessel and optimization of their parameters. The cooling capacity characteristic of such MCCs is also small and lies in the range of 1-4 watts and depends on the pressure level at the inlet to the MCC, and the rate of its cooling (self-cooling) reaches several seconds. The operating temperature of the MCC depends on the type of working fluid, for example, nitrogen to reach the level of -196 °C. To ensure minimum working fluid consumption in the MCC, there is a throttle microvalve, which is self-regulating depending on the temperature of the working fluid behind the nozzle. Thus, the miniaturization of the MCC and the Dewar vessel leads to the conclusion that the possibility of modeling various MCC designs has become an important tool for studying and optimizing the parameters of the thermogas-dynamic state of the MCC, taking into account the average dimensions and individual parts of the MCC, while experimental studies are much more complicated. Based on the title of this work, using the example of a miniature microrefrigerator with a spiral capillary tube with ribs, a nozzle, a frame and a Dewar vessel, the existing typical two-dimensional model of the thermogas-dynamic state of the MCC with a Dewar is considered, which does not take into account temperature gradients in the radial direction, which is a certain problem in modeling. The aim of the work was to supplement the existing two-dimensional mathematical model to the level of a more accurate three-dimensional model to take into account solid parts of the MCC, as well as the use of modern computer technologies for implementing models, which is the novelty of the work. The authors of this work have supplemented the existing two-dimensional model to the level of a more accurate three-dimensional model by adding differential components along the radial axis of the model to take into account all temperature gradients and heat flows, which also significantly affect the overall refrigeration of the MCC. The application of computer technology for modeling the thermo-gasodynamic processes of a microrefrigerator with a Dewar vessel for cooling microcircuits and sensors, namely field CFD and nodal technology for creating both separate and so-called hybrid models, is also considered.
first_indexed 2026-02-08T08:10:14Z
format Article
id oai:ojs2.ihenasgovua.s43.yourdomain.com.ua:article-650
institution Thermophysics and Thermal Power Engineering
language Ukrainian
last_indexed 2026-02-08T08:10:14Z
publishDate 2025
publisher Institute of Engineering Thermophysics of NAS of Ukraine
record_format ojs
spelling oai:ojs2.ihenasgovua.s43.yourdomain.com.ua:article-6502026-01-01T09:32:44Z MODELING OF MICRO REFRIGERATORS WITH THE JOLE–THOMSON EFFECT МОДЕЛЮВАННЯ МІКРОХОЛОДИЛЬНИКІВ З ЕФЕКТОМ ДЖОУЛЯ–ТОМСОНА Krukovsky, P.G. Tkach, V.M. The principle of operation and design of microrefrigerators (MRCs) with the Joule-Thomson effect for cooling microelectronics and infrared sensors are considered. The organization of countercurrent heat exchange between a direct compressed gas flow to the throttle and a cooled expanded gas flow after the throttle can reach cryogenic temperatures. The last decades have been devoted to the choice of the design of such MRCs, as well as the development of mathematical models and computer programs to select the optimal parameters of these designs. Based on the miniature dimensions of the MRC itself (3-15 mm in diameter and 3-10 cm in length) and individual parts (fractions of mm) of the heat exchanger. The cooling capacity characteristic of such MRCs is also small and lies in the range of 1-4 watts and depends on the pressure level at the MRC inlet, and the rate of its cooling (self-cooling) reaches several seconds. The operating temperature of the MRC depends on the type of working fluid, for example, nitrogen to reach the level of -196 °C. To ensure minimum working fluid consumption in the MCC, there is a throttle microvalve, which is self-regulating depending on the temperature of the working fluid behind the nozzle. It is concluded that modern modeling is an important tool for detailed analysis of the thermo-gas-dynamic state of the MCC with a Dewar vessel and optimization of their parameters. The cooling capacity characteristic of such MCCs is also small and lies in the range of 1-4 watts and depends on the pressure level at the inlet to the MCC, and the rate of its cooling (self-cooling) reaches several seconds. The operating temperature of the MCC depends on the type of working fluid, for example, nitrogen to reach the level of -196 °C. To ensure minimum working fluid consumption in the MCC, there is a throttle microvalve, which is self-regulating depending on the temperature of the working fluid behind the nozzle. Thus, the miniaturization of the MCC and the Dewar vessel leads to the conclusion that the possibility of modeling various MCC designs has become an important tool for studying and optimizing the parameters of the thermogas-dynamic state of the MCC, taking into account the average dimensions and individual parts of the MCC, while experimental studies are much more complicated. Based on the title of this work, using the example of a miniature microrefrigerator with a spiral capillary tube with ribs, a nozzle, a frame and a Dewar vessel, the existing typical two-dimensional model of the thermogas-dynamic state of the MCC with a Dewar is considered, which does not take into account temperature gradients in the radial direction, which is a certain problem in modeling. The aim of the work was to supplement the existing two-dimensional mathematical model to the level of a more accurate three-dimensional model to take into account solid parts of the MCC, as well as the use of modern computer technologies for implementing models, which is the novelty of the work. The authors of this work have supplemented the existing two-dimensional model to the level of a more accurate three-dimensional model by adding differential components along the radial axis of the model to take into account all temperature gradients and heat flows, which also significantly affect the overall refrigeration of the MCC. The application of computer technology for modeling the thermo-gasodynamic processes of a microrefrigerator with a Dewar vessel for cooling microcircuits and sensors, namely field CFD and nodal technology for creating both separate and so-called hybrid models, is also considered. Розглянуто принцип роботи, конструкцію та існуючу математичну модель мікрохолодильників (МКХ) з ефектом Джоуля-Томсона для охолодження мікроелектроніки і інфрачервоних датчиків. Принцип роботи ефекту Джоуля-Томсона полягає в адіабатному охолоджуванні потоку газу при різкому розширенні після проходження через дросель. Організація противоточного теплообміну між прямим стислим потоком газу до дроселя і охолодженим розширеним після дроселя може  досягати криогенних температур. Останні десятиріччя були присвячені вибору конструкції таких МКХ, а також розвитку математичних моделей і комп’ютерних програм з метою вибору оптимальних параметрів цих конструкцій. В роботі на прикладі мініатюрного мікрохолодильника зі спіральною капілярною трубкою з  ребрами, соплом, оправою та сосудом Дьюара розглядається існуюча двовимірна модель термогазодинамічного стану мікрохолодильників з робочим газом азот  і пропонується більш точна тривимірна математична і комп’ютерні моделі, що і є новизною роботи.    Institute of Engineering Thermophysics of NAS of Ukraine 2025-09-30 Article Article application/pdf https://ihe.nas.gov.ua/index.php/journal/article/view/650 10.31472/ttpe.3.2025.5 Thermophysics and Thermal Power Engineering; Vol 49 No 3 (2025): Thermophysics and Thermal Power Engineering; 54-61 Теплофизика и Теплоэнергетика; Vol 49 No 3 (2025): Thermophysics and Thermal Power Engineering; 54-61 Теплофізика та Теплоенергетика; Vol 49 No 3 (2025): Thermophysics and Thermal Power Engineering; 54-61 2663-7235 uk https://ihe.nas.gov.ua/index.php/journal/article/view/650/567
spellingShingle Krukovsky, P.G.
Tkach, V.M.
МОДЕЛЮВАННЯ МІКРОХОЛОДИЛЬНИКІВ З ЕФЕКТОМ ДЖОУЛЯ–ТОМСОНА
title МОДЕЛЮВАННЯ МІКРОХОЛОДИЛЬНИКІВ З ЕФЕКТОМ ДЖОУЛЯ–ТОМСОНА
title_alt MODELING OF MICRO REFRIGERATORS WITH THE JOLE–THOMSON EFFECT
title_full МОДЕЛЮВАННЯ МІКРОХОЛОДИЛЬНИКІВ З ЕФЕКТОМ ДЖОУЛЯ–ТОМСОНА
title_fullStr МОДЕЛЮВАННЯ МІКРОХОЛОДИЛЬНИКІВ З ЕФЕКТОМ ДЖОУЛЯ–ТОМСОНА
title_full_unstemmed МОДЕЛЮВАННЯ МІКРОХОЛОДИЛЬНИКІВ З ЕФЕКТОМ ДЖОУЛЯ–ТОМСОНА
title_short МОДЕЛЮВАННЯ МІКРОХОЛОДИЛЬНИКІВ З ЕФЕКТОМ ДЖОУЛЯ–ТОМСОНА
title_sort моделювання мікрохолодильників з ефектом джоуля–томсона
url https://ihe.nas.gov.ua/index.php/journal/article/view/650
work_keys_str_mv AT krukovskypg modelingofmicrorefrigeratorswiththejolethomsoneffect
AT tkachvm modelingofmicrorefrigeratorswiththejolethomsoneffect
AT krukovskypg modelûvannâmíkroholodilʹnikívzefektomdžoulâtomsona
AT tkachvm modelûvannâmíkroholodilʹnikívzefektomdžoulâtomsona