До тензорного аналізу розв’язності задачі реалізації білінійної системи другого порядку із запізненням
Определены аналитические условия (необходимые/достаточные) решения задачи дифференциальной реализации континуального пучка управляемых траекторных кривых в классе билинейных неавтономных обычных дифференциальных уравнений (с опозданием и без) второго порядка в материальном сепарабельном гильбертовом...
Gespeichert in:
| Datum: | 2019 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
V.M. Glushkov Institute of Cybernetics of NAS of Ukraine
2019
|
| Schlagworte: | |
| Online Zugang: | https://jais.net.ua/index.php/files/article/view/130 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Problems of Control and Informatics |
Institution
Problems of Control and Informatics| Zusammenfassung: | Определены аналитические условия (необходимые/достаточные) решения задачи дифференциальной реализации континуального пучка управляемых траекторных кривых в классе билинейных неавтономных обычных дифференциальных уравнений (с опозданием и без) второго порядка в материальном сепарабельном гильбертовом пространстве. Эта задача относится к типу обратных задач для аддитивной комбинации нестационарных линейных и билинейных операторов эволюционных уравнений в бесконечномерном гильбертовом пространстве. Метамовой данной теории служат конструкции тензорных произведений гильбертовых пространств, структуры решеток с ортодополнением и функциональный аппарат нелинейного оператора Релея-Ритца. При этом показано, что при конечном пучке траекторий наличие свойств типа сублинейности данного оператора позволяет получить достаточные условия для существования таких реализаций. Попутно обосновываются тополого-метрические условия непрерывности проектизации нелинейного функционального опера-тора Релея–Ритца с вычислением фундаментальной группы его образа. Полученные результаты побуждают к развитию теории нелинейной структурной идентификации полилинейных дифференциальных моделей высших порядков (например, для моделирования многоканальных нейроимплантов типа Neuralink). |
|---|