THE METHOD OF DETERMINING THE DIELECTRIC RELATIVE PERMITTIVITY IN THE MM AND SUBMM WAVELENGTH RANGES BASED ON THE MEASURING OF THE PLASMON-POLARITONE RESONANCE PARAMETERS

Purpose: The purpose of the work is to develop a new method for determining the complex dielectric permeability of dielectrics in mm and submm wavelength ranges.Design/methodology/approach: The proposed method consists in registration of parameters of a plasmon polariton resonance, which arises at d...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Lytvynenko, L. N., Myshenko, V. V., Bortsov, V. V., Lisachenko, V. M., Polikarpov, O. V., Gavrikov, V. K., Spevak, I. S.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Видавничий дім «Академперіодика» 2020
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1339
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
id oai:ri.kharkov.ua:article-1339
record_format ojs
institution Radio physics and radio astronomy
collection OJS
language Ukrainian
topic measurement of optical characteristics
dielectric permeability
terahertz range
electromagnetic radiation diffraction
plasmon polariton resonance
measurement of optical characteristics
dielectric permeability
terahertz range
electromagnetic radiation diffraction
plasmon polariton resonance
вимірювання оптичних характеристик
діелектрична проникність
терагерцовий діапазон
дифракція електромагнітного випромінювання
плазмон-поляритонний резонанс
spellingShingle measurement of optical characteristics
dielectric permeability
terahertz range
electromagnetic radiation diffraction
plasmon polariton resonance
measurement of optical characteristics
dielectric permeability
terahertz range
electromagnetic radiation diffraction
plasmon polariton resonance
вимірювання оптичних характеристик
діелектрична проникність
терагерцовий діапазон
дифракція електромагнітного випромінювання
плазмон-поляритонний резонанс
Lytvynenko, L. N.
Myshenko, V. V.
Bortsov, V. V.
Lisachenko, V. M.
Polikarpov, O. V.
Gavrikov, V. K.
Spevak, I. S.
THE METHOD OF DETERMINING THE DIELECTRIC RELATIVE PERMITTIVITY IN THE MM AND SUBMM WAVELENGTH RANGES BASED ON THE MEASURING OF THE PLASMON-POLARITONE RESONANCE PARAMETERS
topic_facet measurement of optical characteristics
dielectric permeability
terahertz range
electromagnetic radiation diffraction
plasmon polariton resonance
measurement of optical characteristics
dielectric permeability
terahertz range
electromagnetic radiation diffraction
plasmon polariton resonance
вимірювання оптичних характеристик
діелектрична проникність
терагерцовий діапазон
дифракція електромагнітного випромінювання
плазмон-поляритонний резонанс
format Article
author Lytvynenko, L. N.
Myshenko, V. V.
Bortsov, V. V.
Lisachenko, V. M.
Polikarpov, O. V.
Gavrikov, V. K.
Spevak, I. S.
author_facet Lytvynenko, L. N.
Myshenko, V. V.
Bortsov, V. V.
Lisachenko, V. M.
Polikarpov, O. V.
Gavrikov, V. K.
Spevak, I. S.
author_sort Lytvynenko, L. N.
title THE METHOD OF DETERMINING THE DIELECTRIC RELATIVE PERMITTIVITY IN THE MM AND SUBMM WAVELENGTH RANGES BASED ON THE MEASURING OF THE PLASMON-POLARITONE RESONANCE PARAMETERS
title_short THE METHOD OF DETERMINING THE DIELECTRIC RELATIVE PERMITTIVITY IN THE MM AND SUBMM WAVELENGTH RANGES BASED ON THE MEASURING OF THE PLASMON-POLARITONE RESONANCE PARAMETERS
title_full THE METHOD OF DETERMINING THE DIELECTRIC RELATIVE PERMITTIVITY IN THE MM AND SUBMM WAVELENGTH RANGES BASED ON THE MEASURING OF THE PLASMON-POLARITONE RESONANCE PARAMETERS
title_fullStr THE METHOD OF DETERMINING THE DIELECTRIC RELATIVE PERMITTIVITY IN THE MM AND SUBMM WAVELENGTH RANGES BASED ON THE MEASURING OF THE PLASMON-POLARITONE RESONANCE PARAMETERS
title_full_unstemmed THE METHOD OF DETERMINING THE DIELECTRIC RELATIVE PERMITTIVITY IN THE MM AND SUBMM WAVELENGTH RANGES BASED ON THE MEASURING OF THE PLASMON-POLARITONE RESONANCE PARAMETERS
title_sort method of determining the dielectric relative permittivity in the mm and submm wavelength ranges based on the measuring of the plasmon-polaritone resonance parameters
title_alt THE METHOD OF DETERMINING THE DIELECTRIC RELATIVE PERMITTIVITY IN THE MM AND SUBMM WAVELENGTH RANGES BASED ON THE MEASURING OF THE PLASMON-POLARITONE RESONANCE PARAMETERS
МЕТОД ВИЗНАЧЕННЯ ДІЕЛЕКТРИЧНОЇ ПРОНИКНОСТІ ДІЕЛЕКТРИКІВ У ММ ТА СУБММ ДІАПАЗОНАХ ДОВЖИН ХВИЛЬ НА ПІДСТАВІ ВИМІРЮВАННЯ ПАРАМЕТРІВ ПЛАЗМОН-ПОЛЯРИТОННОГО РЕЗОНАНСУ
description Purpose: The purpose of the work is to develop a new method for determining the complex dielectric permeability of dielectrics in mm and submm wavelength ranges.Design/methodology/approach: The proposed method consists in registration of parameters of a plasmon polariton resonance, which arises at diffraction of electromagnetic radiation on a diffraction grating created on the surface of the conductive medium (metal or semiconductor) and registration of changes in these parameters when applied to the grating film of the material whose dielectric permeability should be found. On the laboratory unit, created on the basis of the terahertz HCN-laser, the dependence of the intensity of radiation, mirrored reflected from the grids, from the angle of incidence and determined the position and width of the plasmon-polaritone resonance for a clean grid and the same grid covered with the dielectric film. From comparison of these parameters, the values of the resonance shear and widening caused by the presence of the film were found. On the other hand, from the theoretical solution of the mentioned problem of diffraction under the conditions of a plasmon-polaritone resonance, the dependences of the resonance shear and width on optical characteristics of the investigated film (under the conditions of its small optical thickness) were found. Comparison of experimentally found and theoretically defined values of displacement and width of the resonance allows to determine the complex dielectric permeability of the film (at its known thickness).Findings: Test measurements of the complex dielectric permeability of the reference polypropylene film have been made by the proposed method. The measurements have been compared with the known data obtained earlier by spectroscopic and interferometric methods. It was found that the obtained and known values of the actual parts of the polypropylene dielectric permeability differ by less than 10 %, and the values of their imaginary parts coincide in the order of magnitude.Conclusions: The received results testify to suitability of the offered method for operational express measurements of optical characteristics of dielectrics films with small optical thickness.Key words: measurement of optical characteristics, dielectric permeability, terahertz range, electromagnetic radiation diffraction, plasmon polariton resonanceManuscript submitted  22.06.2020Radio phys. radio astron. 2020, 25(3): 231-239REFERENCES1. TYDEX, 2020. THz Materials [online]. [viewed 10.07.2020]. Available from: http://www.tydexoptics.com/products/thz_optics/thz_materials/2. WHEELER, J. D., KOOPMAN, B., GALLARDO, P., MALONEY, P. R., BRUGGER, S., CORTES-MEDELLIN, G., DATTA, R., DOWELL, C. D., GLENN, J., GOLWALA, S., MCKENNE, C., MCMAHON, J. J., NIEMACK, M., PARSHLEY, S. and STACEY, G., 2014. Antireflection coatings for submillimeter silicon lenses. In: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. Proceedings of SPIE. Vol. 9153. Bellingham, WA: Society of Photo-Optical Instrumentation Engineers (SPIE), id. 91532Z. DOI: https://doi.org/10.1117/12.20570113. KAPLUNOV, I. A., KOLESNIKOV, A. I., KROPOTOV, G. I. and ROGALIN, V. E., 2019. Optical Properties of Single-Crystal Germanium in the THz Range. Opt. Spectrosc. vol. 126, is. 3, pp. 191–194. DOI: https://doi.org/10.1134/S0030400X190300934. TYDEX, 2020. Synthetic Cristal Quartz. [online]. [viewed 10.07.2020]. Available from: http://www.tydexoptics.com/ materials1/for_transmission_optics/crystal_quartz/5. ZAIDEL, A. N., OSTROVSKAYA, G. V. and OSTROVSKY, YU. I., 1972. Spectroscopy Techniques and Practice. Moscow, Russia: Nauka Publ. (in Russian).6. EGOROV, V. N., 2007. Resonance methods for microwave studies of dielectrics (Review). Instrum. Exp. Tech. vol. 50, is. 2, pp. 143–175. DOI: https://doi.org/10.1134/S00204412070200177. KUZNETSOV, S. A., ASTAFEV, M. A., LAZORSKY, P. A., SKLYAROV, V. F., LONSHAKOV, YE. A. and ARZHANNIKOV, A. V., 2014. Spectral measurements of dielectric properties of polypropylene films in the subterahertz frequency range. Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya Fizika. vol. 9, is. 4, pp. 15–38. (in Russian).8. VLASOV, S. N., PARSHIN, V. V. and SEROV, E. A., 2010. Methods for investigating thin dielectric films in the millimeter range. Tech. Phys. vol. 55, is. 12, pp. 1781–1787. DOI: https://doi.org/10.1134/S10637842101201219. PARSHIN, V. V. and SEROV, E. A., 2015. Precise resonator methods investigation of dielectric and metal at 40 GHz – 500 GHz frequency range and in 4 K – 900 K temperature interval. Elektronika i Mikroelektronika SVCh. vol. 1, pp. 34–39. (in Russian). DOI: https://doi.org/10.1109/GSMM.2016.750031410. VALYANSKY, S. I., VINOGRADOV, S. V. and SAVRANSKY, V. V., 1992. Frequency-angle spectroscopy of surface plasmon polaritons excited in thin metal films. Pis’ma v Zhurnal Tekhnicheskoi Fiziki. vol. 18, is 5, pp. 70–73. (in Russian).11. GERASIMOV, V. V., KNYAZEV, B. A., NIKITIN, A. K. and ZHIZHIN, G. N., 2011. A way to determine the permittivity of metallized surfaces at terahertz frequencies. Appl. Phys. Lett. vol. 98, is. 17, id. 171912. DOI: https://doi.org/10.1063/1.358413012. AGRANOVICH, V. M. and MILLS, D. L., eds., 1985. Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces. Moscow, Russia: Nauka Publ. (in Russian).13. MAIER, S. A., 2007. Plasmonics: Fundamentals and Applications. New York: Springer US. DOI: https://doi.org/10.1007/0-387-37825-114. SPEVAK, I. S., TYMCHENKO, M. O., GAVRIKOV, V. K., KAMENEV, Y. Y., SHULGA, V. M., SUN, H.-B, FENG, J. and KATS, A. V., 2013. Influence of optical properties of a semiconductor and a periodic structure profile on the surface plasmon-polaritone resonance in the terahertz range. Radio Phys. Radio Astron. vol. 18, no. 4, pp. 341–348. (in Russian).15. KATS, A. V. and SPEVAK, I. S., 2002. Analytical theory of resonance diffraction and transformation of light polarization. Phys. Rev. B. vol. 65, is. 19, id. 195406. DOI: https://doi.org/10.1103/PhysRevB.65.19540616. SPEVAK, I. S., KUZMENKO, A. A., TYMCHENKO, M., GAVRIKOV, V. K., SHULGA, V. M., FENG, J., SUN H. B., KAMENEV, YU. E. and KATS, A. V., 2016. Surface plasmon-polariton resonance at diffraction of THz radiationon semiconductor gratings. Low Temp. Phys. vol. 42, is. 8, pp. 698–702. DOI: https://doi.org/10.1063/1.496049717. DZYBENKO, M. I. and RADIONOV, V. P., 2017. Laser method for measuring the refractive index of transparent substances in the terahertz range. Ukrainian Metrological Journal. no. 1, pp. 11–14. (in Russian). DOI: https://doi.org/10.24027/2306-7039.1.2017.101844
publisher Видавничий дім «Академперіодика»
publishDate 2020
url http://rpra-journal.org.ua/index.php/ra/article/view/1339
work_keys_str_mv AT lytvynenkoln themethodofdeterminingthedielectricrelativepermittivityinthemmandsubmmwavelengthrangesbasedonthemeasuringoftheplasmonpolaritoneresonanceparameters
AT myshenkovv themethodofdeterminingthedielectricrelativepermittivityinthemmandsubmmwavelengthrangesbasedonthemeasuringoftheplasmonpolaritoneresonanceparameters
AT bortsovvv themethodofdeterminingthedielectricrelativepermittivityinthemmandsubmmwavelengthrangesbasedonthemeasuringoftheplasmonpolaritoneresonanceparameters
AT lisachenkovm themethodofdeterminingthedielectricrelativepermittivityinthemmandsubmmwavelengthrangesbasedonthemeasuringoftheplasmonpolaritoneresonanceparameters
AT polikarpovov themethodofdeterminingthedielectricrelativepermittivityinthemmandsubmmwavelengthrangesbasedonthemeasuringoftheplasmonpolaritoneresonanceparameters
AT gavrikovvk themethodofdeterminingthedielectricrelativepermittivityinthemmandsubmmwavelengthrangesbasedonthemeasuringoftheplasmonpolaritoneresonanceparameters
AT spevakis themethodofdeterminingthedielectricrelativepermittivityinthemmandsubmmwavelengthrangesbasedonthemeasuringoftheplasmonpolaritoneresonanceparameters
AT lytvynenkoln metodviznačennâdíelektričnoíproniknostídíelektrikívummtasubmmdíapazonahdovžinhvilʹnapídstavívimírûvannâparametrívplazmonpolâritonnogorezonansu
AT myshenkovv metodviznačennâdíelektričnoíproniknostídíelektrikívummtasubmmdíapazonahdovžinhvilʹnapídstavívimírûvannâparametrívplazmonpolâritonnogorezonansu
AT bortsovvv metodviznačennâdíelektričnoíproniknostídíelektrikívummtasubmmdíapazonahdovžinhvilʹnapídstavívimírûvannâparametrívplazmonpolâritonnogorezonansu
AT lisachenkovm metodviznačennâdíelektričnoíproniknostídíelektrikívummtasubmmdíapazonahdovžinhvilʹnapídstavívimírûvannâparametrívplazmonpolâritonnogorezonansu
AT polikarpovov metodviznačennâdíelektričnoíproniknostídíelektrikívummtasubmmdíapazonahdovžinhvilʹnapídstavívimírûvannâparametrívplazmonpolâritonnogorezonansu
AT gavrikovvk metodviznačennâdíelektričnoíproniknostídíelektrikívummtasubmmdíapazonahdovžinhvilʹnapídstavívimírûvannâparametrívplazmonpolâritonnogorezonansu
AT spevakis metodviznačennâdíelektričnoíproniknostídíelektrikívummtasubmmdíapazonahdovžinhvilʹnapídstavívimírûvannâparametrívplazmonpolâritonnogorezonansu
AT lytvynenkoln methodofdeterminingthedielectricrelativepermittivityinthemmandsubmmwavelengthrangesbasedonthemeasuringoftheplasmonpolaritoneresonanceparameters
AT myshenkovv methodofdeterminingthedielectricrelativepermittivityinthemmandsubmmwavelengthrangesbasedonthemeasuringoftheplasmonpolaritoneresonanceparameters
AT bortsovvv methodofdeterminingthedielectricrelativepermittivityinthemmandsubmmwavelengthrangesbasedonthemeasuringoftheplasmonpolaritoneresonanceparameters
AT lisachenkovm methodofdeterminingthedielectricrelativepermittivityinthemmandsubmmwavelengthrangesbasedonthemeasuringoftheplasmonpolaritoneresonanceparameters
AT polikarpovov methodofdeterminingthedielectricrelativepermittivityinthemmandsubmmwavelengthrangesbasedonthemeasuringoftheplasmonpolaritoneresonanceparameters
AT gavrikovvk methodofdeterminingthedielectricrelativepermittivityinthemmandsubmmwavelengthrangesbasedonthemeasuringoftheplasmonpolaritoneresonanceparameters
AT spevakis methodofdeterminingthedielectricrelativepermittivityinthemmandsubmmwavelengthrangesbasedonthemeasuringoftheplasmonpolaritoneresonanceparameters
first_indexed 2024-05-26T06:28:36Z
last_indexed 2024-05-26T06:28:36Z
_version_ 1802804650841210880
spelling oai:ri.kharkov.ua:article-13392020-09-23T10:29:18Z THE METHOD OF DETERMINING THE DIELECTRIC RELATIVE PERMITTIVITY IN THE MM AND SUBMM WAVELENGTH RANGES BASED ON THE MEASURING OF THE PLASMON-POLARITONE RESONANCE PARAMETERS THE METHOD OF DETERMINING THE DIELECTRIC RELATIVE PERMITTIVITY IN THE MM AND SUBMM WAVELENGTH RANGES BASED ON THE MEASURING OF THE PLASMON-POLARITONE RESONANCE PARAMETERS МЕТОД ВИЗНАЧЕННЯ ДІЕЛЕКТРИЧНОЇ ПРОНИКНОСТІ ДІЕЛЕКТРИКІВ У ММ ТА СУБММ ДІАПАЗОНАХ ДОВЖИН ХВИЛЬ НА ПІДСТАВІ ВИМІРЮВАННЯ ПАРАМЕТРІВ ПЛАЗМОН-ПОЛЯРИТОННОГО РЕЗОНАНСУ Lytvynenko, L. N. Myshenko, V. V. Bortsov, V. V. Lisachenko, V. M. Polikarpov, O. V. Gavrikov, V. K. Spevak, I. S. measurement of optical characteristics; dielectric permeability; terahertz range; electromagnetic radiation diffraction; plasmon polariton resonance measurement of optical characteristics; dielectric permeability; terahertz range; electromagnetic radiation diffraction; plasmon polariton resonance вимірювання оптичних характеристик; діелектрична проникність; терагерцовий діапазон; дифракція електромагнітного випромінювання; плазмон-поляритонний резонанс Purpose: The purpose of the work is to develop a new method for determining the complex dielectric permeability of dielectrics in mm and submm wavelength ranges.Design/methodology/approach: The proposed method consists in registration of parameters of a plasmon polariton resonance, which arises at diffraction of electromagnetic radiation on a diffraction grating created on the surface of the conductive medium (metal or semiconductor) and registration of changes in these parameters when applied to the grating film of the material whose dielectric permeability should be found. On the laboratory unit, created on the basis of the terahertz HCN-laser, the dependence of the intensity of radiation, mirrored reflected from the grids, from the angle of incidence and determined the position and width of the plasmon-polaritone resonance for a clean grid and the same grid covered with the dielectric film. From comparison of these parameters, the values of the resonance shear and widening caused by the presence of the film were found. On the other hand, from the theoretical solution of the mentioned problem of diffraction under the conditions of a plasmon-polaritone resonance, the dependences of the resonance shear and width on optical characteristics of the investigated film (under the conditions of its small optical thickness) were found. Comparison of experimentally found and theoretically defined values of displacement and width of the resonance allows to determine the complex dielectric permeability of the film (at its known thickness).Findings: Test measurements of the complex dielectric permeability of the reference polypropylene film have been made by the proposed method. The measurements have been compared with the known data obtained earlier by spectroscopic and interferometric methods. It was found that the obtained and known values of the actual parts of the polypropylene dielectric permeability differ by less than 10 %, and the values of their imaginary parts coincide in the order of magnitude.Conclusions: The received results testify to suitability of the offered method for operational express measurements of optical characteristics of dielectrics films with small optical thickness.Key words: measurement of optical characteristics, dielectric permeability, terahertz range, electromagnetic radiation diffraction, plasmon polariton resonanceManuscript submitted  22.06.2020Radio phys. radio astron. 2020, 25(3): 231-239REFERENCES1. TYDEX, 2020. THz Materials [online]. [viewed 10.07.2020]. Available from: http://www.tydexoptics.com/products/thz_optics/thz_materials/2. WHEELER, J. D., KOOPMAN, B., GALLARDO, P., MALONEY, P. R., BRUGGER, S., CORTES-MEDELLIN, G., DATTA, R., DOWELL, C. D., GLENN, J., GOLWALA, S., MCKENNE, C., MCMAHON, J. J., NIEMACK, M., PARSHLEY, S. and STACEY, G., 2014. Antireflection coatings for submillimeter silicon lenses. In: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. Proceedings of SPIE. Vol. 9153. Bellingham, WA: Society of Photo-Optical Instrumentation Engineers (SPIE), id. 91532Z. DOI: https://doi.org/10.1117/12.20570113. KAPLUNOV, I. A., KOLESNIKOV, A. I., KROPOTOV, G. I. and ROGALIN, V. E., 2019. Optical Properties of Single-Crystal Germanium in the THz Range. Opt. Spectrosc. vol. 126, is. 3, pp. 191–194. DOI: https://doi.org/10.1134/S0030400X190300934. TYDEX, 2020. Synthetic Cristal Quartz. [online]. [viewed 10.07.2020]. Available from: http://www.tydexoptics.com/ materials1/for_transmission_optics/crystal_quartz/5. ZAIDEL, A. N., OSTROVSKAYA, G. V. and OSTROVSKY, YU. I., 1972. Spectroscopy Techniques and Practice. Moscow, Russia: Nauka Publ. (in Russian).6. EGOROV, V. N., 2007. Resonance methods for microwave studies of dielectrics (Review). Instrum. Exp. Tech. vol. 50, is. 2, pp. 143–175. DOI: https://doi.org/10.1134/S00204412070200177. KUZNETSOV, S. A., ASTAFEV, M. A., LAZORSKY, P. A., SKLYAROV, V. F., LONSHAKOV, YE. A. and ARZHANNIKOV, A. V., 2014. Spectral measurements of dielectric properties of polypropylene films in the subterahertz frequency range. Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya Fizika. vol. 9, is. 4, pp. 15–38. (in Russian).8. VLASOV, S. N., PARSHIN, V. V. and SEROV, E. A., 2010. Methods for investigating thin dielectric films in the millimeter range. Tech. Phys. vol. 55, is. 12, pp. 1781–1787. DOI: https://doi.org/10.1134/S10637842101201219. PARSHIN, V. V. and SEROV, E. A., 2015. Precise resonator methods investigation of dielectric and metal at 40 GHz – 500 GHz frequency range and in 4 K – 900 K temperature interval. Elektronika i Mikroelektronika SVCh. vol. 1, pp. 34–39. (in Russian). DOI: https://doi.org/10.1109/GSMM.2016.750031410. VALYANSKY, S. I., VINOGRADOV, S. V. and SAVRANSKY, V. V., 1992. Frequency-angle spectroscopy of surface plasmon polaritons excited in thin metal films. Pis’ma v Zhurnal Tekhnicheskoi Fiziki. vol. 18, is 5, pp. 70–73. (in Russian).11. GERASIMOV, V. V., KNYAZEV, B. A., NIKITIN, A. K. and ZHIZHIN, G. N., 2011. A way to determine the permittivity of metallized surfaces at terahertz frequencies. Appl. Phys. Lett. vol. 98, is. 17, id. 171912. DOI: https://doi.org/10.1063/1.358413012. AGRANOVICH, V. M. and MILLS, D. L., eds., 1985. Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces. Moscow, Russia: Nauka Publ. (in Russian).13. MAIER, S. A., 2007. Plasmonics: Fundamentals and Applications. New York: Springer US. DOI: https://doi.org/10.1007/0-387-37825-114. SPEVAK, I. S., TYMCHENKO, M. O., GAVRIKOV, V. K., KAMENEV, Y. Y., SHULGA, V. M., SUN, H.-B, FENG, J. and KATS, A. V., 2013. Influence of optical properties of a semiconductor and a periodic structure profile on the surface plasmon-polaritone resonance in the terahertz range. Radio Phys. Radio Astron. vol. 18, no. 4, pp. 341–348. (in Russian).15. KATS, A. V. and SPEVAK, I. S., 2002. Analytical theory of resonance diffraction and transformation of light polarization. Phys. Rev. B. vol. 65, is. 19, id. 195406. DOI: https://doi.org/10.1103/PhysRevB.65.19540616. SPEVAK, I. S., KUZMENKO, A. A., TYMCHENKO, M., GAVRIKOV, V. K., SHULGA, V. M., FENG, J., SUN H. B., KAMENEV, YU. E. and KATS, A. V., 2016. Surface plasmon-polariton resonance at diffraction of THz radiationon semiconductor gratings. Low Temp. Phys. vol. 42, is. 8, pp. 698–702. DOI: https://doi.org/10.1063/1.496049717. DZYBENKO, M. I. and RADIONOV, V. P., 2017. Laser method for measuring the refractive index of transparent substances in the terahertz range. Ukrainian Metrological Journal. no. 1, pp. 11–14. (in Russian). DOI: https://doi.org/10.24027/2306-7039.1.2017.101844 Purpose: The purpose of the work is to develop a new method for determining the complex dielectric permeability of dielectrics in mm and submm wavelength ranges.Design/methodology/approach: The proposed method consists in registration of parameters of a plasmon polariton resonance, which arises at diffraction of electromagnetic radiation on a diffraction grating created on the surface of the conductive medium (metal or semiconductor) and registration of changes in these parameters when applied to the grating film of the material whose dielectric permeability should be found. On the laboratory unit, created on the basis of the terahertz HCN-laser, the dependence of the intensity of radiation, mirrored reflected from the grids, from the angle of incidence and determined the position and width of the plasmon-polaritone resonance for a clean grid and the same grid covered with the dielectric film. From comparison of these parameters, the values of the resonance shear and widening caused by the presence of the film were found. On the other hand, from the theoretical solution of the mentioned problem of diffraction under the conditions of a plasmon-polaritone resonance, the dependences of the resonance shear and width on optical characteristics of the investigated film (under the conditions of its small optical thickness) were found. Comparison of experimentally found and theoretically defined values of displacement and width of the resonance allows to determine the complex dielectric permeability of the film (at its known thickness).Findings: Test measurements of the complex dielectric permeability of the reference polypropylene film have been made by the proposed method. The measurements have been compared with the known data obtained earlier by spectroscopic and interferometric methods. It was found that the obtained and known values of the actual parts of the polypropylene dielectric permeability differ by less than 10 %, and the values of their imaginary parts coincide in the order of magnitude.Conclusions: The received results testify to suitability of the offered method for operational express measurements of optical characteristics of dielectrics films with small optical thickness.Key words: measurement of optical characteristics, dielectric permeability, terahertz range, electromagnetic radiation diffraction, plasmon polariton resonanceManuscript submitted  22.06.2020Radio phys. radio astron. 2020, 25(3): 231-239REFERENCES1. TYDEX, 2020. THz Materials [online]. [viewed 10.07.2020]. Available from: http://www.tydexoptics.com/products/thz_optics/thz_materials/2. WHEELER, J. D., KOOPMAN, B., GALLARDO, P., MALONEY, P. R., BRUGGER, S., CORTES-MEDELLIN, G., DATTA, R., DOWELL, C. D., GLENN, J., GOLWALA, S., MCKENNE, C., MCMAHON, J. J., NIEMACK, M., PARSHLEY, S. and STACEY, G., 2014. Antireflection coatings for submillimeter silicon lenses. In: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. Proceedings of SPIE. Vol. 9153. Bellingham, WA: Society of Photo-Optical Instrumentation Engineers (SPIE), id. 91532Z. DOI: https://doi.org/10.1117/12.20570113. KAPLUNOV, I. A., KOLESNIKOV, A. I., KROPOTOV, G. I. and ROGALIN, V. E., 2019. Optical Properties of Single-Crystal Germanium in the THz Range. Opt. Spectrosc. vol. 126, is. 3, pp. 191–194. DOI: https://doi.org/10.1134/S0030400X190300934. TYDEX, 2020. Synthetic Cristal Quartz. [online]. [viewed 10.07.2020]. Available from: http://www.tydexoptics.com/ materials1/for_transmission_optics/crystal_quartz/5. ZAIDEL, A. N., OSTROVSKAYA, G. V. and OSTROVSKY, YU. I., 1972. Spectroscopy Techniques and Practice. Moscow, Russia: Nauka Publ. (in Russian).6. EGOROV, V. N., 2007. Resonance methods for microwave studies of dielectrics (Review). Instrum. Exp. Tech. vol. 50, is. 2, pp. 143–175. DOI: https://doi.org/10.1134/S00204412070200177. KUZNETSOV, S. A., ASTAFEV, M. A., LAZORSKY, P. A., SKLYAROV, V. F., LONSHAKOV, YE. A. and ARZHANNIKOV, A. V., 2014. Spectral measurements of dielectric properties of polypropylene films in the subterahertz frequency range. Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya Fizika. vol. 9, is. 4, pp. 15–38. (in Russian).8. VLASOV, S. N., PARSHIN, V. V. and SEROV, E. A., 2010. Methods for investigating thin dielectric films in the millimeter range. Tech. Phys. vol. 55, is. 12, pp. 1781–1787. DOI: https://doi.org/10.1134/S10637842101201219. PARSHIN, V. V. and SEROV, E. A., 2015. Precise resonator methods investigation of dielectric and metal at 40 GHz – 500 GHz frequency range and in 4 K – 900 K temperature interval. Elektronika i Mikroelektronika SVCh. vol. 1, pp. 34–39. (in Russian). DOI: https://doi.org/10.1109/GSMM.2016.750031410. VALYANSKY, S. I., VINOGRADOV, S. V. and SAVRANSKY, V. V., 1992. Frequency-angle spectroscopy of surface plasmon polaritons excited in thin metal films. Pis’ma v Zhurnal Tekhnicheskoi Fiziki. vol. 18, is 5, pp. 70–73. (in Russian).11. GERASIMOV, V. V., KNYAZEV, B. A., NIKITIN, A. K. and ZHIZHIN, G. N., 2011. A way to determine the permittivity of metallized surfaces at terahertz frequencies. Appl. Phys. Lett. vol. 98, is. 17, id. 171912. DOI: https://doi.org/10.1063/1.358413012. AGRANOVICH, V. M. and MILLS, D. L., eds., 1985. Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces. Moscow, Russia: Nauka Publ. (in Russian).13. MAIER, S. A., 2007. Plasmonics: Fundamentals and Applications. New York: Springer US. DOI: https://doi.org/10.1007/0-387-37825-114. SPEVAK, I. S., TYMCHENKO, M. O., GAVRIKOV, V. K., KAMENEV, Y. Y., SHULGA, V. M., SUN, H.-B, FENG, J. and KATS, A. V., 2013. Influence of optical properties of a semiconductor and a periodic structure profile on the surface plasmon-polaritone resonance in the terahertz range. Radio Phys. Radio Astron. vol. 18, no. 4, pp. 341–348. (in Russian).15. KATS, A. V. and SPEVAK, I. S., 2002. Analytical theory of resonance diffraction and transformation of light polarization. Phys. Rev. B. vol. 65, is. 19, id. 195406. DOI: https://doi.org/10.1103/PhysRevB.65.19540616. SPEVAK, I. S., KUZMENKO, A. A., TYMCHENKO, M., GAVRIKOV, V. K., SHULGA, V. M., FENG, J., SUN H. B., KAMENEV, YU. E. and KATS, A. V., 2016. Surface plasmon-polariton resonance at diffraction of THz radiationon semiconductor gratings. Low Temp. Phys. vol. 42, is. 8, pp. 698–702. DOI: https://doi.org/10.1063/1.496049717. DZYBENKO, M. I. and RADIONOV, V. P., 2017. Laser method for measuring the refractive index of transparent substances in the terahertz range. Ukrainian Metrological Journal. no. 1, pp. 11–14. (in Russian). DOI: https://doi.org/10.24027/2306-7039.1.2017.101844 УДК 55.083.2; 535.4Предмет і мета роботи: Мета роботи полягає у розробці нового методу визначення комплексної діелектричної проникності діелектриків у міліметровому та субміліметровому діапазонах довжин хвиль.Методи і методологія: Пропонований метод полягає у реєстрації параметрів плазмон-поляритонного резонансу, що збуджується при дифракції електромагнітного випромінювання на дифракційній решітці, створеній на поверхні провідного середовища (металу чи напівпровідника), і реєстрації зміни цих параметрів при нанесенні на решітку плівки матеріалу, діелектричну проникність якого маємо знайти. За допомогою лабораторної установки, створеної на базі терагерцового HCN-лазера, досліджено залежність інтенсивності випромінювання, дзеркально відбитого від решітки, від кута падіння та визначено положення і ширина плазмон-поляритонного резонансу для чистої решітки та такої ж решітки, вкритої плівкою діелектрика. Із порівняння цих параметрів знайдено значення зсуву та розширення резонансу, викликаних наявністю плівки. З іншого боку, із теоретичного вирішення вказаної задачі дифракції за умов плазмон-поляритонного резонансу знайдено залежності зсуву і розширення резонансу від оптичних характеристик досліджуваної плівки (за умов її малої оптичної товщини). Зіставлення експериментально знайдених та теоретично обчислених значень зсуву і розширення резонансу дає можливість визначити комплексну діелектричну проникність плівки.Результати: Запропонованим методом виконано тестові вимірювання комплексної діелектричної проникності еталонної плівки поліпропілену, які порівняні із відомими даними, отриманими раніше спектроскопічним та інтерферометричним методами. Встановлено, що отримані та відомі значення дійсних частин діелектричної проникності поліпропілену відрізняються менше ніж на 10 %, а значення їх уявних частин збігаються за порядком величини.Висновок: Отримані результати свідчать про придатність пропонованого методу до оперативних експрес-вимірювань оптичних характеристик плівкових діелектриків з малою оптичною товщиною.Ключові слова: вимірювання оптичних характеристик, діелектрична проникність, терагерцовий діапазон, дифракція електромагнітного випромінювання, плазмон-поляритонний резонансСтаття надійшла до редакції  22.06.2020Radio phys. radio astron. 2020, 25(3): 231-2391. ТГц материалы. TYDEX. URL: http://www.tydexoptics.com/ru/products/thz_optics/thz_materials/ (дата звернення: 10.07.2020).2. Wheeler J. D., Koopman B., Gallardo P., Maloney P. R., Brugger S., Cortes-Medellin G., Datta R., Dowell C. D., Glenn J., Golwala S., McKenney C., McMahon J. J., Niemack M., Parshley S., and Stacey G. Anti-reflection coatings for submillimeter silicon lenses. In: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. Proceedings of SPIE. Vol. 9153. Bellingham, WA: Society of Photo-Optical Instrumentation Engineers (SPIE), 2014. id. 91532Z. DOI: 10.1117/12.20570113. Каплунов И. А., Колесников А. И., Кропотов Г. И., Рогалин В. Е. Оптические свойства монокристаллического германия в терагерцовой области спектра. Журнал технической физики. 2019. Т. 126, № 3. С. 271–274. DOI: 10.21883/OS.2019.03.47365.194-184. Кристаллический кварц. TYDEX. URL: http://www.tydexoptics.com/ru/materials/for_transmission_optics/crystal_quartz/ (дата звернення: 10.07.2020).5. Зайдель А. Н., Островская Г. В., Островский Ю. И. Техника и практика спектроскопии. Москва: Наука, 1972. 375 с.6. Егоров В. Н. Резонансные методы исследования диэлектриков на с.в.ч. (обзор). Приборы и техника эксперимента. 2007. № 2. С. 5–38.7. Кузнецов С. А., Астафьев М. А., Лазорский П. А., Скляров В. Ф., Лоншаков Е. А., Аржанников А. В. Спектральные измерения диэлектрических свойств полипропиленовых пленок в субтерагерцовом диапазоне частот. Вестник Новосибирского государственного университета. Серия: Физика. 2014. Т. 9, № 4. С. 15–38.8. Власов С. Н., Паршин В. В., Серов Е. А. Методы исследования тонких диэлектрических пленок в миллиметровом диапазоне. Журнал технической физики. 2010. Т. 80, № 12. С. 73–79.9. Паршин В. В., Серов Е. А. Прецизионные резонаторные методы исследований диэлектриков и металлов в диапазоне частот 40 ГГц – 500 ГГц и в интервале температур 4 К – 900 К. Электроника и микроэлектроника СВЧ. 2015. Т. 1. С. 34–39.10. Валянский С. И., Виноградов С. В., Савранский В. В. Частотно-угловая спектроскопия поверхностных плазмон-поляритонов, возбуждаемых в тонких металлических пленках. Письма в Журнал технической физики. 1992, Т. 18, № 5. С. 70–73.11. Gerasimov V. V., Knyazev В. А., Nikitin А. К., and Zhizhin G. N. A way to determine the permittivity of metalized surfaces at terahertz frequencies. Appl. Phys. Lett. 2011. Vol. 98, Is. 17. id. 171912. DOI: 10.1063/1.358413012. Поверхностные поляритоны: Электромагнитные волны на поверхностях и границах раздела сред. Под ред. В. М. Аграновича и Д. Л. Миллса. Москва: Наука, 1985. 525 с.13. Maier S. А. Plasmonics: Fundamentals and Applications. New York: Springer US, 2007. 224 р.14. Спевак И. С., Тимченко М. А., Гавриков В. К., Каменев Ю. Е., Шульга В. М., Сан Х-Б, Фенг Дж., Кац А. В. Влияние оптических свойств полупроводника и параметров профиля периодической поверхности на структуру плазмон-поляритонного резонанса в терагерцевом диапазоне. Радіофізика і радіоастрономія. 2013. Т. 18, № 4, С. 341–348.15. Kats A. V. and Spevak I. S. Analytical theory of resonance diffraction and transformation of light polarization. Phys. Rev. B. 2002. Vol. 65, Is. 19. id. 195406. DOI: 10.1103/PhysRevB.65.19540616. Spevak I. S., Kuzmenko A. A.,Tymchenko M., Gavrikov V. K., ShulgaV. M., Feng J., Sun H. B., Kamenev Yu. E., and Kats A. V. Surface plasmon-polariton resonance at diffraction of THz radiation on semiconductor gratings. Low Temp. Phys. 2016. Vol. 42, Is. 8. P. 698–702. DOI: 10.1063/1.496049717. Дзюбенко М. И., Радионов В. П. Лазерный метод измерения показателя преломления прозрачных веществ в терагерцевом диапазоне. Український метрологічний журнал. 2017. № 1. С. 11–14. DOI: 10.24027/2306-7039.1.2017.101844 Видавничий дім «Академперіодика» 2020-09-10 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1339 10.15407/rpra25.03.231 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 25, No 3 (2020); 231 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 25, No 3 (2020); 231 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 25, No 3 (2020); 231 2415-7007 1027-9636 10.15407/rpra25.03 uk http://rpra-journal.org.ua/index.php/ra/article/view/1339/pdf Copyright (c) 2020 RADIO PHYSICS AND RADIO ASTRONOMY