TERAHERTZ OSCILLATIONS IN InN GUNN DIODES WITH AN ACTIVE REGION LENGTH OF 1 μm AND WITH A GRADED GaInN LAYER

Subject and Purpose. The InN Gunn diode is known as the device capable of generating powerful oscillations at frequencies above 300 GHz. A possible way for increasing both the microwave power and the cutoff frequency of the Gunn diode is to employ gradedgap semiconductors. The subject of this resear...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автори: Storozhenko, I. P., Sanin, S. I.
Формат: Стаття
Мова:English
Опубліковано: Видавничий дім «Академперіодика» 2023
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1403
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
id oai:ri.kharkov.ua:article-1403
record_format ojs
institution Radio physics and radio astronomy
collection OJS
language English
topic

spellingShingle

Storozhenko, I. P.
Sanin, S. I.
TERAHERTZ OSCILLATIONS IN InN GUNN DIODES WITH AN ACTIVE REGION LENGTH OF 1 μm AND WITH A GRADED GaInN LAYER
topic_facet

format Article
author Storozhenko, I. P.
Sanin, S. I.
author_facet Storozhenko, I. P.
Sanin, S. I.
author_sort Storozhenko, I. P.
title TERAHERTZ OSCILLATIONS IN InN GUNN DIODES WITH AN ACTIVE REGION LENGTH OF 1 μm AND WITH A GRADED GaInN LAYER
title_short TERAHERTZ OSCILLATIONS IN InN GUNN DIODES WITH AN ACTIVE REGION LENGTH OF 1 μm AND WITH A GRADED GaInN LAYER
title_full TERAHERTZ OSCILLATIONS IN InN GUNN DIODES WITH AN ACTIVE REGION LENGTH OF 1 μm AND WITH A GRADED GaInN LAYER
title_fullStr TERAHERTZ OSCILLATIONS IN InN GUNN DIODES WITH AN ACTIVE REGION LENGTH OF 1 μm AND WITH A GRADED GaInN LAYER
title_full_unstemmed TERAHERTZ OSCILLATIONS IN InN GUNN DIODES WITH AN ACTIVE REGION LENGTH OF 1 μm AND WITH A GRADED GaInN LAYER
title_sort terahertz oscillations in inn gunn diodes with an active region length of 1 μm and with a graded gainn layer
title_alt ТЕРАГЕРЦОВІ КОЛИВАННЯ В InN-ДІОДАХ ГАННА З ДОВЖИНОЮ АКТИВНОЇ ОБЛАСТІ 1 мкм ТА З GaInN ВАРИЗОННИМ ШАРОМ
description Subject and Purpose. The InN Gunn diode is known as the device capable of generating powerful oscillations at frequencies above 300 GHz. A possible way for increasing both the microwave power and the cutoff frequency of the Gunn diode is to employ gradedgap semiconductors. The subject of this research is the process for generating electrical oscillations in InN and graded-gap GaInN Gunn diodes that involve resistive contacts at the cathode and the anode, and possess a 1-μm long active region. The research is aimed at suggesting an optimized structure for the graded-gap GaInN diode to obtain a maximum microwave power and maximum frequency of the oscillations, while consuming the lowest possible amount of DC power.Methods and Methodology. А hydrodynamic simulation has been performed of transport of electrons in graded-gap semiconductors, and an integro-differential equation analyzed concerning voltage drop across elements of the related RLC circuit.Results. The power spectra of oscillations have been analyzed for a variety of parameters of both the Gunn diode and the RLC circuit. The frequency dependences of the oscillatory power, characteristic of different electron concentrations, provide evidence for the possibility of obtaining considerable microwave powers at frequencies above 300 GHz through the use of graded-gap GaInN diodes.Conclusion. The results that have been obtained clearly confirm the expected practicality of using a graded GaInN layer in the InN diode for increasing the power of microwave oscillations, reducing the necessary level of the DC power, and restraining the dependence of the output characteristics on the electron density. The highest power of oscillations has been demonstrated by the InN diode with a 0.1 μm long graded-gap layer of GaInN. Meanwhile, the oscillation frequency generated in that diode is somewhat lower than in the InN diode. A compromise between the values of generated power and the oscillation frequency has been reached in the diode with a graded-gap GaInN layer of 0.9 μm in length. In addition, the latter structure requires the lowest level of DC power for effectuating microwave generation at the higher feasible frequencies.Keywords: Gunn diode, indium nitride, gallium-indium nitride, terahertz range, graded-gap semiconductor, oscillator, oscillatory power, output power, cutoff frequency, intervalley transfer of electronsManuscript submitted 05.07.2022Radio phys. radio astron. 2022, 27(4):289-298REFERENCES1. Hesler, J., Prasankumar, R., Tignon, J., 2019. Advances in terahertz solid-state physics and devices. J. Appl. Phys., 126(11), pp. 110401. DOI:https://doi.org/10.1063/1.51229752. Trew, R.J., 2005. High-frequency solid-state electronic devices. IEEE Trans. Electron Devices, 52(5), pp. 638—649. DOI:https://doi.org/10.1109/TED.2005.8458623. Storozhenko, I., 2020. Gunn diodes based on graded-gap GaInPAs. J. Nano- Electron. Phys., 12(1), pp. 010151—010159. DOI: https://doi.org/10.21272/jnep.12(1).010154. Arkusha, Yu.V., Prokhorov, E.D., Storozhenko, I.P., 2000. InxGa1–xAs/GaAs GaAs heterocathode in a GaAs millimeter-wave range Gunn diode. Radiotekhnika i Elektronika, 45(4), pp. 508—510.5. Sharma, S.K., Kim, D.Y., 2015. Design, simulation, fabrication, packaging and testing of an AlGaAs/GaAs Gunn diode at 94 GHz. J. Korean Phys. Soc., 67(4), pp. 619—624. DOI: 10.3938/jkps.67.619. DOI:https://doi.org/10.3938/jkps.67.6196. Förster, A., Lepsa, M.I., Freundt, D., Stock, J., Montanari, S., 2007. Hot electron injector Gunn diode for advanced driver assistance systems. Appl. Phys. A., 87, pp. 545—558. DOI:https://doi.org/10.1007/s00339-007-3872-57. Eisele, H., 2020. Third-harmonic power extraction from InP Gunn devices up to 455 GHz. IEEE Microwave Wireless Compon. Lett., 19(6), pp. 416—418. DOI:https://doi.org/10.1109/LMWC.2009.20200448. Eisele, H., Kamoua, R., 2004. Submillimeter-wave InP Gunn devices. IEEE Trans. Microw. Theory Tech., 52(10), pp. 2371—2378. DOI:https://doi.org/10.1109/TMTT.2004.8359749. Garcia, S., Perez, S., Iniguez-de-la-Torre, I., Mateos, J., Gonzalez, T., 2014. Comparative Monte Carlo analysis of InP- and GaN-based Gunn diodes. J. Appl. Phys., 115(4), pp. 44510. DOI:https://doi.org/10.1063/1.486339910. Storozhenko, I., Sanin, S., 2022. Advanced micron sized Gunn diode based on graded-gap GaPAs – GaInAs. J. Nano- Electron. Phys., 14(1), pp. 01027—01032. DOI:https://doi.org/10.21272/jnep.14(1).0102711. Ata Khalid, Dunn, G.M., Macpherson, R.F., Thoms, S., Macintyre, D., Li, C., Steer, M.J., Papageorgiou, V., Thayne, I.G., Kuball, M., Oxley, C.H., Montes Bajo, M., Stephen, A., Glover, J., and Cumming, D.R.S., 2014. Terahertz oscillations in an In0.53Ga0.47As submicron planar Gunn diode. J. Appl. Phys., 115(11), pp. 114502. DOI:https://doi.org/10.1063/1.486870512. Botsula, O.V., Prykhodko, К.H., 2019. Generation of electromagnetic oscillations of submillimeter range by GazIn1–zAs diodes using impact ionization. J. Nano- Electron. Phys., 11(2), pp. 020091—020095. DOI:https://doi.org/10.21272/jnep.11(2).0200913. Pereza, S., Gonzalez, T., Pardo, D., Mateos, J., 2008. Terahertz Gunn-like oscillations in InGaAs/InAlAs planar diodes. J. Appl. Phys., 103(9), pp. 094516. DOI:https://doi.org/10.1063/1.291724614. Dobrinsky, A., Simin, G., Gaska, R., Shur, M., 2013. III-Nitride Materials and Devices for Power Electronics. ECS Trans., 58(4), pp. 129—143. DOI:https://doi.org/10.1149/05804.0129ecst15. Yue, Hao, Lin-An, Yang, Jin-Cheng, Zhang, 2008. GaN-based Semiconductor Devices for Terahertz Technology. Int. J. Terahertz Sci. Technol., 1(2), pp. 51—64. DOI: 10.11906/TST.051-064.2008.06.0716. Storozhenko, I.P., Arkusha, Yu.V., 2012. Prospects for using Gunn diodes based on GaN, AlN and InN. Telecommunications and Radio Engineering, 71(8), pp. 717—727. DOI:https://doi.org/10.1615/TelecomRadEng.v71.i8.4017. Farahmand, M., Garetto, C., Bellotti, E., Brennan, K.F., Goano, M., Ghillino, E., Ghione, G., Albrecht, J.D., Ruden, P.P., 2001. Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries. IEEE Trans. Electron Devices, 48(3), pp. 535—542. DOI:https://doi.org/10.1109/16.90644818. Aloise, G., Vitanov, S., Palankovski, V., 2011. Performance study of nitride-based Gunn diodes. In: 2011 NSTI Nanotechnology Conf. and Expo (NSTI-Nanotech): Proc. Boston, Massachusetts, USA, 13—16 Jun. 2011. Vol. 2, pp. 599—602.19. Storozhenko, I.P., 2014. Resonance frequencies of Gunn diodes based on nitride graded-gap semiconductors. Telecommunications and Radio Engineering, 73(13), pp. 1201—1207. DOI:https://doi.org/10.1615/TelecomRadEng.v73.i13.6020. Islama, M.O., Hassanb, Md.G., Islama, Md.R., Uddina, Md.A., Mahmooda, Z.H., 2011. Theoretical estimation of Gunn oscillation in InxGa1−xN. AIP Conf. Proc., 1399(1), pp. 167. DOI:https://doi.org/10.1063/1.366630921. Storozhenko, I.P., Yaroshenko, A.N., Arkusha, Yu.V., 2014. InBN and GaBN graded-gap Gunn diodes. Telecommunications and Radio Engineering, 73(16), pp. 1461—1470. DOI:https://doi.org/10.1615/TelecomRadEng.v73.i16.6022. Storozhenko, I.P., Yaroshenko, A.N., Kaydash, M.V., 2012. Graded-gap AlInN Gunn diodes. Semicond. Phys. Quantum Electron. Optoelectron., 15(2), pp. 176—180. DOI: https://doi.org/10.15407/spqeo15.0223. Storozhenko, I., Kaydash, M., 2020. Theoretical Study of Current Oscillations in Gunn Diodes Based on Graded III-nitrides Operating in Submillimeter Range: Frequency and Power. In: 2020 IEEE Ukrainian Microwave Week (UkrMW). Kharkiv, Ukraine, 21—25 Sept. 2020. Vol. 3, pp. 917—920. DOI: https://doi.org/10.1109/UkrMW49653.2020.925266024. Yang, L., Long, Sh., Guo, X., Yue, Hao, 2012. A comparative investigation on sub-micrometer InN and GaN Gunn diodes working at terahertz frequency. J. Appl. Phys., 111(10), pp. 104514. DOI: https://doi.org/10.1063/1.472166725. Botsula, O.V., Prykhodko, K.H., 2020. Graded band InGaN-based diode for noise generation in terahertz range. In: 2020 IEEE Ukrainian Microwave Week (UkrMW). Kharkiv, Ukraine, 21—25 Sept. 2020. Vol. 3, pp. 925—928. DOI: https://doi.org/10.1109/UkrMW49653.2020.925276326. Yilmazoglu, O., Mutamba, K., Pavlidis, D., Karaduman, T., 2008. First Observation of Bias Oscillations in GaN Gunn Diodes on GaN Substrate. IEEE Trans. Electron Devices, 55(6), pp. 1563—1567. DOI: https://doi.org/10.1109/TED.2008.92125327. Hajo, A.S., Yilmazoglu, O., Samodi, B., Dadgar, A., Kuppers, F., Kussorow, T., 2019. A new approach to achieve Gunn effect for GaN based THz sources with high power. In: 44th Int. Conf. Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Paris, France, 1—6 Sept. 2019. P. 1—2. DOI: https://doi.org/10.1109/IRMMW-THz.2019.8873720
publisher Видавничий дім «Академперіодика»
publishDate 2023
url http://rpra-journal.org.ua/index.php/ra/article/view/1403
work_keys_str_mv AT storozhenkoip terahertzoscillationsininngunndiodeswithanactiveregionlengthof1mmandwithagradedgainnlayer
AT saninsi terahertzoscillationsininngunndiodeswithanactiveregionlengthof1mmandwithagradedgainnlayer
AT storozhenkoip teragercovíkolivannâvinndíodahgannazdovžinoûaktivnoíoblastí1mkmtazgainnvarizonnimšarom
AT saninsi teragercovíkolivannâvinndíodahgannazdovžinoûaktivnoíoblastí1mkmtazgainnvarizonnimšarom
first_indexed 2024-05-26T06:28:53Z
last_indexed 2024-05-26T06:28:53Z
_version_ 1802895110070861824
spelling oai:ri.kharkov.ua:article-14032023-06-21T04:56:22Z TERAHERTZ OSCILLATIONS IN InN GUNN DIODES WITH AN ACTIVE REGION LENGTH OF 1 μm AND WITH A GRADED GaInN LAYER ТЕРАГЕРЦОВІ КОЛИВАННЯ В InN-ДІОДАХ ГАННА З ДОВЖИНОЮ АКТИВНОЇ ОБЛАСТІ 1 мкм ТА З GaInN ВАРИЗОННИМ ШАРОМ Storozhenko, I. P. Sanin, S. I. Subject and Purpose. The InN Gunn diode is known as the device capable of generating powerful oscillations at frequencies above 300 GHz. A possible way for increasing both the microwave power and the cutoff frequency of the Gunn diode is to employ gradedgap semiconductors. The subject of this research is the process for generating electrical oscillations in InN and graded-gap GaInN Gunn diodes that involve resistive contacts at the cathode and the anode, and possess a 1-μm long active region. The research is aimed at suggesting an optimized structure for the graded-gap GaInN diode to obtain a maximum microwave power and maximum frequency of the oscillations, while consuming the lowest possible amount of DC power.Methods and Methodology. А hydrodynamic simulation has been performed of transport of electrons in graded-gap semiconductors, and an integro-differential equation analyzed concerning voltage drop across elements of the related RLC circuit.Results. The power spectra of oscillations have been analyzed for a variety of parameters of both the Gunn diode and the RLC circuit. The frequency dependences of the oscillatory power, characteristic of different electron concentrations, provide evidence for the possibility of obtaining considerable microwave powers at frequencies above 300 GHz through the use of graded-gap GaInN diodes.Conclusion. The results that have been obtained clearly confirm the expected practicality of using a graded GaInN layer in the InN diode for increasing the power of microwave oscillations, reducing the necessary level of the DC power, and restraining the dependence of the output characteristics on the electron density. The highest power of oscillations has been demonstrated by the InN diode with a 0.1 μm long graded-gap layer of GaInN. Meanwhile, the oscillation frequency generated in that diode is somewhat lower than in the InN diode. A compromise between the values of generated power and the oscillation frequency has been reached in the diode with a graded-gap GaInN layer of 0.9 μm in length. In addition, the latter structure requires the lowest level of DC power for effectuating microwave generation at the higher feasible frequencies.Keywords: Gunn diode, indium nitride, gallium-indium nitride, terahertz range, graded-gap semiconductor, oscillator, oscillatory power, output power, cutoff frequency, intervalley transfer of electronsManuscript submitted 05.07.2022Radio phys. radio astron. 2022, 27(4):289-298REFERENCES1. Hesler, J., Prasankumar, R., Tignon, J., 2019. Advances in terahertz solid-state physics and devices. J. Appl. Phys., 126(11), pp. 110401. DOI:https://doi.org/10.1063/1.51229752. Trew, R.J., 2005. High-frequency solid-state electronic devices. IEEE Trans. Electron Devices, 52(5), pp. 638—649. DOI:https://doi.org/10.1109/TED.2005.8458623. Storozhenko, I., 2020. Gunn diodes based on graded-gap GaInPAs. J. Nano- Electron. Phys., 12(1), pp. 010151—010159. DOI: https://doi.org/10.21272/jnep.12(1).010154. Arkusha, Yu.V., Prokhorov, E.D., Storozhenko, I.P., 2000. InxGa1–xAs/GaAs GaAs heterocathode in a GaAs millimeter-wave range Gunn diode. Radiotekhnika i Elektronika, 45(4), pp. 508—510.5. Sharma, S.K., Kim, D.Y., 2015. Design, simulation, fabrication, packaging and testing of an AlGaAs/GaAs Gunn diode at 94 GHz. J. Korean Phys. Soc., 67(4), pp. 619—624. DOI: 10.3938/jkps.67.619. DOI:https://doi.org/10.3938/jkps.67.6196. Förster, A., Lepsa, M.I., Freundt, D., Stock, J., Montanari, S., 2007. Hot electron injector Gunn diode for advanced driver assistance systems. Appl. Phys. A., 87, pp. 545—558. DOI:https://doi.org/10.1007/s00339-007-3872-57. Eisele, H., 2020. Third-harmonic power extraction from InP Gunn devices up to 455 GHz. IEEE Microwave Wireless Compon. Lett., 19(6), pp. 416—418. DOI:https://doi.org/10.1109/LMWC.2009.20200448. Eisele, H., Kamoua, R., 2004. Submillimeter-wave InP Gunn devices. IEEE Trans. Microw. Theory Tech., 52(10), pp. 2371—2378. DOI:https://doi.org/10.1109/TMTT.2004.8359749. Garcia, S., Perez, S., Iniguez-de-la-Torre, I., Mateos, J., Gonzalez, T., 2014. Comparative Monte Carlo analysis of InP- and GaN-based Gunn diodes. J. Appl. Phys., 115(4), pp. 44510. DOI:https://doi.org/10.1063/1.486339910. Storozhenko, I., Sanin, S., 2022. Advanced micron sized Gunn diode based on graded-gap GaPAs – GaInAs. J. Nano- Electron. Phys., 14(1), pp. 01027—01032. DOI:https://doi.org/10.21272/jnep.14(1).0102711. Ata Khalid, Dunn, G.M., Macpherson, R.F., Thoms, S., Macintyre, D., Li, C., Steer, M.J., Papageorgiou, V., Thayne, I.G., Kuball, M., Oxley, C.H., Montes Bajo, M., Stephen, A., Glover, J., and Cumming, D.R.S., 2014. Terahertz oscillations in an In0.53Ga0.47As submicron planar Gunn diode. J. Appl. Phys., 115(11), pp. 114502. DOI:https://doi.org/10.1063/1.486870512. Botsula, O.V., Prykhodko, К.H., 2019. Generation of electromagnetic oscillations of submillimeter range by GazIn1–zAs diodes using impact ionization. J. Nano- Electron. Phys., 11(2), pp. 020091—020095. DOI:https://doi.org/10.21272/jnep.11(2).0200913. Pereza, S., Gonzalez, T., Pardo, D., Mateos, J., 2008. Terahertz Gunn-like oscillations in InGaAs/InAlAs planar diodes. J. Appl. Phys., 103(9), pp. 094516. DOI:https://doi.org/10.1063/1.291724614. Dobrinsky, A., Simin, G., Gaska, R., Shur, M., 2013. III-Nitride Materials and Devices for Power Electronics. ECS Trans., 58(4), pp. 129—143. DOI:https://doi.org/10.1149/05804.0129ecst15. Yue, Hao, Lin-An, Yang, Jin-Cheng, Zhang, 2008. GaN-based Semiconductor Devices for Terahertz Technology. Int. J. Terahertz Sci. Technol., 1(2), pp. 51—64. DOI: 10.11906/TST.051-064.2008.06.0716. Storozhenko, I.P., Arkusha, Yu.V., 2012. Prospects for using Gunn diodes based on GaN, AlN and InN. Telecommunications and Radio Engineering, 71(8), pp. 717—727. DOI:https://doi.org/10.1615/TelecomRadEng.v71.i8.4017. Farahmand, M., Garetto, C., Bellotti, E., Brennan, K.F., Goano, M., Ghillino, E., Ghione, G., Albrecht, J.D., Ruden, P.P., 2001. Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries. IEEE Trans. Electron Devices, 48(3), pp. 535—542. DOI:https://doi.org/10.1109/16.90644818. Aloise, G., Vitanov, S., Palankovski, V., 2011. Performance study of nitride-based Gunn diodes. In: 2011 NSTI Nanotechnology Conf. and Expo (NSTI-Nanotech): Proc. Boston, Massachusetts, USA, 13—16 Jun. 2011. Vol. 2, pp. 599—602.19. Storozhenko, I.P., 2014. Resonance frequencies of Gunn diodes based on nitride graded-gap semiconductors. Telecommunications and Radio Engineering, 73(13), pp. 1201—1207. DOI:https://doi.org/10.1615/TelecomRadEng.v73.i13.6020. Islama, M.O., Hassanb, Md.G., Islama, Md.R., Uddina, Md.A., Mahmooda, Z.H., 2011. Theoretical estimation of Gunn oscillation in InxGa1−xN. AIP Conf. Proc., 1399(1), pp. 167. DOI:https://doi.org/10.1063/1.366630921. Storozhenko, I.P., Yaroshenko, A.N., Arkusha, Yu.V., 2014. InBN and GaBN graded-gap Gunn diodes. Telecommunications and Radio Engineering, 73(16), pp. 1461—1470. DOI:https://doi.org/10.1615/TelecomRadEng.v73.i16.6022. Storozhenko, I.P., Yaroshenko, A.N., Kaydash, M.V., 2012. Graded-gap AlInN Gunn diodes. Semicond. Phys. Quantum Electron. Optoelectron., 15(2), pp. 176—180. DOI: https://doi.org/10.15407/spqeo15.0223. Storozhenko, I., Kaydash, M., 2020. Theoretical Study of Current Oscillations in Gunn Diodes Based on Graded III-nitrides Operating in Submillimeter Range: Frequency and Power. In: 2020 IEEE Ukrainian Microwave Week (UkrMW). Kharkiv, Ukraine, 21—25 Sept. 2020. Vol. 3, pp. 917—920. DOI: https://doi.org/10.1109/UkrMW49653.2020.925266024. Yang, L., Long, Sh., Guo, X., Yue, Hao, 2012. A comparative investigation on sub-micrometer InN and GaN Gunn diodes working at terahertz frequency. J. Appl. Phys., 111(10), pp. 104514. DOI: https://doi.org/10.1063/1.472166725. Botsula, O.V., Prykhodko, K.H., 2020. Graded band InGaN-based diode for noise generation in terahertz range. In: 2020 IEEE Ukrainian Microwave Week (UkrMW). Kharkiv, Ukraine, 21—25 Sept. 2020. Vol. 3, pp. 925—928. DOI: https://doi.org/10.1109/UkrMW49653.2020.925276326. Yilmazoglu, O., Mutamba, K., Pavlidis, D., Karaduman, T., 2008. First Observation of Bias Oscillations in GaN Gunn Diodes on GaN Substrate. IEEE Trans. Electron Devices, 55(6), pp. 1563—1567. DOI: https://doi.org/10.1109/TED.2008.92125327. Hajo, A.S., Yilmazoglu, O., Samodi, B., Dadgar, A., Kuppers, F., Kussorow, T., 2019. A new approach to achieve Gunn effect for GaN based THz sources with high power. In: 44th Int. Conf. Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Paris, France, 1—6 Sept. 2019. P. 1—2. DOI: https://doi.org/10.1109/IRMMW-THz.2019.8873720 Предмет і мета роботи. Приладом, що потенційно може забезпечувати генерацію потужних коливань на частотах вище 300 ГГц , вважається InN-діод Ганна. Одним із засобів підвищення НВЧ-потужності та граничної частоти діодівГанна є використання варизонних напівпровідників. Об’єктом даного дослідження є процес генерації в InN- та варизонних GaInN-діодах Ганна з омічними катодним та анодним контактами та довжиною активної області 1 мкм. Для збільшення потужності коливань пропонується зміна складу GaInN-напівпровідника. Метою роботи є оптимізація структури варизонного GaInN-діода для отримання максимальної потужності та частоти коливань при мінімальній потужностіпостійного струму.Методи та методологія. Застосовано математичну модель гідродинамічного транспорту електронів у варизонних напівпровідниках, а також інтегродиференціальне рівняння відносно падіння напруги на коливальному RLC-контурі.Результати. Отримано та проаналізовано спектри потужності коливань при різних параметрах діода та коливального контуру. Знайдено залежності потужності коливань від частоти для різних концентрацій електронів, які свідчать про можливість отримання суттєвої НВЧ-потужності на частотах понад 300 ГГц за допомогою InN-діодів Ганна з варизонним GaInN-шаром.Висновок. Підтверджено перспективність використання варизонного GaInN-шару в InN-діоді для підвищення потужності електричних коливань, зниження необхідної потужності постійного струму та зменшення залежності вихідних характеристик від концентрації електронів. Найбільшу потужність коливань демонстрував InN-діод з варизонним GaInN-шаром довжиною 0.1 мкм, проте частота коливань у такому діоді була нижчою, ніж в InN-діоді. Діод з варизоннимGaInN-шаром довжиною 0.9 мкм забезпечує компроміс між потужністю та частотою НВЧ-коливань і потребує найменшої потужності постійного струму для генерації на високих частотах.Ключові слова: діод Ганна, нітрид індію, нітрид індію-галію, терагерцовий діапазон, варизонний напівпровідник, генератор, потужність коливань, вихідна потужність, гранична частота, міждолинне перенесення електронівСтаття надійшла до редакції 05.07.2022Radio phys. radio astron. 2022, 27(4):289-298БІБЛІОГРАФІЧНИЙ СПИСОК1. Hesler J., Prasankumar R., Tignon J. Advances in terahertz solid-state physics and devices. J. Appl. Phys. 2019. Vol. 126, Iss. 11. P. 110401. DOI: doi.org/10.1063/1.51229752. Trew R.J. High-frequency solid-state electronic devices. IEEE Trans. Electron Devices. 2005. Vol. 52, Iss. 5. P. 638—649.3. Storozhenko I. Gunn diodes based on graded-gap GaInPAs. J. Nano- Electron. Phys. 2020. Vol. 12, Iss. 1. P. 010151—010159. DOI: 10.21272/jnep.12(1).010154. Arkusha Yu.V., Prokhorov E.D., Storozhenko I.P. InxGa1–xAs/GaAs GaAs heterocathode in a GaAs millimeter-wave range Gunn diode. Radiotekhnika i Elektronika. 2000. Vol. 45, Iss. 4. P. 508—510.5. Sharma S.K., Kim D.Y. Design, simulation, fabrication, packaging and testing of an AlGaAs/GaAs Gunn diode at 94 GHz. J. Korean Phys. Soc. 2015. Vol. 67, Iss. 4. P. 619—624. DOI: 10.3938/jkps.67.6196. Förster A., Lepsa M.I., Freundt D., Stock J., Montanari S. Hot electron injector Gunn diode for advanced driver assistance systems. Appl. Phys. A. 2007. Vol. 87. P. 545—558. DOI: 10.1007/s00339-007-3872-57. Eisele H. Third-harmonic power extraction from InP Gunn devices up to 455 GHz. IEEE Microwave Wireless Compon. Lett. 2020. Vol. 19, Iss. 6. P. 416—418. DOI: 10.1109/LMWC.2009.20200448. Eisele H., Kamoua R. Submillimeter-wave InP Gunn devices. IEEE Trans. Microw. Theory Tech. 2004. Vol. 52, Iss. 10. P. 2371—2378. DOI: 10.1109/TMTT.2004.8359749. Garcia S., Perez S., Iniguez-de-la-Torre I., Mateos J., Gonzalez T. Comparative Monte Carlo analysis of InP- and GaN-based Gunn diodes. J. Appl. Phys. 2014. Vol. 115, Iss. 4. P. 44510. DOI: doi.org/10.1063/1.486339910. Storozhenko I., Sanin S. Advanced micron sized Gunn diode based on graded-gap GaPAs – GaInAs. J. Nano- Electron. Phys. 2022. Vol. 14, Iss. 1. P. 01027—01032. DOI: 10.21272/jnep.14(1).0102711. Ata Khalid, Dunn G.M., Macpherson R.F., Thoms S., Macintyre D., Li C., Steer M.J., Papageorgiou V., Thayne I.G., Kuball M., Oxley C.H., Montes Bajo M., Stephen A., Glover J., and Cumming D.R.S. Terahertz oscillations in an In0.53Ga0.47As submicron planar Gunn diode. J. Appl. Phys. 2014. Vol. 115, Iss. 11. P. 114502. DOI: doi.org/10.1063/1.486870512. Botsula O.V., Prykhodko К.H. Generation of electromagnetic oscillations of submillimeter range by GazIn1–zAs diodes using impact ionization. J. Nano- Electron. Phys. 2019. Vol. 11, Iss. 2. P. 020091—020095. DOI: 10.21272/jnep.11(2).0200913. Pereza S., Gonzalez T., Pardo D., Mateos J. Terahertz Gunn-like oscillations in InGaAs/InAlAs planar diodes. J. Appl. Phys. 2008. Vol. 103, Iss. 9. P. 094516. DOI: https://doi.org/10.1063/1.291724614. Dobrinsky A., Simin G., Gaska R., Shur M. III-Nitride Materials and Devices for Power Electronics. ECS Trans. 2013. Vol. 58, Iss. 4. P. 129—143. DOI: 10.1149/05804.0129ecst.15. Yue Hao, Lin-An Yang, Jin-Cheng Zhang. GaN-based Semiconductor Devices for Terahertz Technology. Int. J. Terahertz Sci. Technol. 2008. Vol. 1, Iss. 2. P. 51—64. DOI: 10.11906/TST.051-064.2008.06.07.16. Storozhenko I.P., Arkusha Yu.V. Prospects for using Gunn diodes based on GaN, AlN and InN. Telecommunications and Radio Engineering. 2012. Vol. 71, Iss. 8. P. 717—727. DOI: 10.1615/TelecomRadEng.v71.i8.40.17. Farahmand M., Garetto C., Bellotti E., Brennan K.F., Goano M., Ghillino E., Ghione G., Albrecht J.D., Ruden P.P. Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries. IEEE Trans. Electron Devices. 2001. Vol. 48, Iss. 3. P. 535—542. DOI: 10.1109/16.90644818. Aloise G., Vitanov S., Palankovski V. Performance study of nitride-based Gunn diodes. 2011 NSTI Nanotechnology Conference and Expo (NSTI-Nanotech): Proc. Boston, Massachusetts, USA, 13—16 Jun. 2011. Vol. 2. P. 599—602.19. Storozhenko I.P. Resonance frequencies of Gunn diodes based on nitride graded-gap semiconductors. Telecommunications and Radio Engineering. 2014. Vol. 73, Iss. 13. P. 1201—1207.20. Islama M.O., Hassanb Md.G., Islama Md.R., Uddina Md.A., Mahmooda Z.H. Theoretical estimation of Gunn oscillation in InxGa1−xN. AIP Conf. Proc. 2011. Vol. 1399, Iss. 1. P. 167. DOI: https://doi.org/10.1063/1.366630921. Storozhenko I.P., Yaroshenko A.N., Arkusha Yu.V. InBN and GaBN graded-gap Gunn diodes. Telecommunications and Radio Engineering. 2014. Vol. 73, Iss. 16. P. 1461–1470. DOI: 10.1615/TelecomRadEng.v73.i16.6022. Storozhenko I.P., Yaroshenko A.N., Kaydash M.V. Graded-gap AlInN Gunn diodes. Semicond. Phys. Quantum Electron. Optoelectron. 2012. Vol. 15, Iss. 2. P. 176—180. DOI: https://doi.org/10.15407/spqeo15.02.23. Storozhenko I., Kaydash M. Th eoretical Study of Current Oscillations in Gunn Diodes Based on Graded III-nitrides Operating in Submillimeter Range: Frequency and Power. 2020 IEEE Ukrainian Microwave Week (UkrMW). Kharkiv, Ukraine, 21—25 Sept. 2020. Vol. 3. P. 917—920. DOI: 10.1109/UkrMW49653.2020.925266024. Yang L., Long Sh., Guo X., Yue Hao. A comparative investigation on submicrometer InN and GaN Gunn diodes working at terahertz frequency. J. Appl. Phys. 2012. Vol. 111, Iss. 10. P. 104514. DOI: doi.org/10.1063/1.472166725. Botsula O.V., Prykhodko K.H. Graded band InGaN-based diode for noise generation in terahertz range. 2020 IEEE Ukrainian Microwave Week (UkrMW). Kharkiv, Ukraine, 21—25 Sept. 2020. Vol. 3. P. 925—928. DOI: 10.1109/UkrMW49653.2020.925276326. Yilmazoglu O., Mutamba K., Pavlidis D., Karaduman T. First Observation of Bias Oscillations in GaN Gunn Diodes on GaN Substrate. IEEE Trans. Electron Devices. 2008. Vol. 55, Iss. 6. P. 1563—1567. DOI: 10.1109/TED.2008.92125327. Hajo A.S., Yilmazoglu O., Samodi B., Dadgar A., Kuppers F., Kussorow T. A new approach to achieve Gunn effect for GaN based THz sources with high power. 44th Int. Conf. Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Paris, France, 1–6 Sept. 2019. P. 1–2. DOI: 10.1109/IRMMW-THz.2019.8873720. Видавничий дім «Академперіодика» 2023-06-15 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1403 10.15407/rpra27.04.289 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 27, No 4 (2022); 289 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 27, No 4 (2022); 289 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 27, No 4 (2022); 289 2415-7007 1027-9636 10.15407/rpra27.04 en http://rpra-journal.org.ua/index.php/ra/article/view/1403/pdf Copyright (c) 2022 RADIO PHYSICS AND RADIO ASTRONOMY