CFD-моделирование радиатора для воздушного охлаждения микропроцессоров в ог­ра­ни­че­н­ном пространстве

One of the final stages of microprocessors development is heat test. This procedure is performed on a special stand, the main element of which is the switching PCB with one or more mounted microprocessor sockets, chipsets, interfaces, jumpers and other components which provide various modes of micro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
Hauptverfasser: Trofimov, V. E., Pavlov, A. L., Mokrousova, E. A.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: PE "Politekhperiodika", Book and Journal Publishers 2016
Schlagworte:
Online Zugang:https://www.tkea.com.ua/index.php/journal/article/view/TKEA2016.6.30
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Technology and design in electronic equipment

Institution

Technology and design in electronic equipment
id oai:tkea.com.ua:article-226
record_format ojs
spelling oai:tkea.com.ua:article-2262025-05-30T19:30:53Z CFD-simulation of radiator for air cooling of microprocessors in a limitided space CFD-моделирование радиатора для воздушного охлаждения микропроцессоров в ог­ра­ни­че­н­ном пространстве Trofimov, V. E. Pavlov, A. L. Mokrousova, E. A. CFD-modeling radiator heat resistance impact jet microprocessor CFD-моделирование радиатор тепловое сопротивление импактные струи микропроцессоры One of the final stages of microprocessors development is heat test. This procedure is performed on a special stand, the main element of which is the switching PCB with one or more mounted microprocessor sockets, chipsets, interfaces, jumpers and other components which provide various modes of microprocessor operation.The temperature of the microprocessor housing is typically changed using a thermoelectric module. The cold surface of the module with controlled temperature is in direct thermal contact with the microprocessor housing designed for cooler installation. On the hot surface of the module a radiator is mounted. The radiator dissipates the cumulative heat flow from both the microprocessor and the module.High density PCB layout, the requirement of free access to the jumpers and interfaces, and the presence of numerous sensors limit the space for radiator mounting and require the use of an extremely compact radiator, especially in air cooling conditions. One of the possible solutions for this problem may reduce the area of the radiator heat-transfer surfaces due to a sharp growth of the heat transfer coefficient without increasing the air flow rate. To ensure a sharp growth of heat transfer coefficient on the heat-transfer surface one should make in the surface one or more dead-end cavities into which the impact air jets would flow.CFD simulation of this type of radiator has been conducted. The heat-aerodynamic characteristics and design recommendations for removing heat from microprocessors in a limited space have been determined. Проведено CFD-моделирование радиатора с компактной теплоотдающей поверхностью в виде ту­пи­ко­вых полостей, в которые втекают импактные воздушные струи. Получены тепло-аэ­ро­ди­на­ми­че­с­кие характеристики и даны рекомендации по конструированию радиаторов та­ко­го ти­па для отвода тепла от микропроцессоров в ограниченном пространстве. PE "Politekhperiodika", Book and Journal Publishers 2016-12-27 Article Article Peer-reviewed Article application/pdf https://www.tkea.com.ua/index.php/journal/article/view/TKEA2016.6.30 10.15222/TKEA2016.6.30 Technology and design in electronic equipment; No. 6 (2016): Tekhnologiya i konstruirovanie v elektronnoi apparature; 30-35 Технологія та конструювання в електронній апаратурі; № 6 (2016): Технология и конструирование в электронной аппаратуре; 30-35 3083-6549 3083-6530 uk https://www.tkea.com.ua/index.php/journal/article/view/TKEA2016.6.30/196 Copyright (c) 2016 V. E. Trofimov, A. L. Pavlov, E. A. Mokrousova http://creativecommons.org/licenses/by/4.0/
institution Technology and design in electronic equipment
baseUrl_str
datestamp_date 2025-05-30T19:30:53Z
collection OJS
language Ukrainian
topic CFD-моделирование
радиатор
тепловое сопротивление
импактные струи
микропроцессоры
spellingShingle CFD-моделирование
радиатор
тепловое сопротивление
импактные струи
микропроцессоры
Trofimov, V. E.
Pavlov, A. L.
Mokrousova, E. A.
CFD-моделирование радиатора для воздушного охлаждения микропроцессоров в ог­ра­ни­че­н­ном пространстве
topic_facet CFD-modeling
radiator
heat resistance
impact jet
microprocessor
CFD-моделирование
радиатор
тепловое сопротивление
импактные струи
микропроцессоры
format Article
author Trofimov, V. E.
Pavlov, A. L.
Mokrousova, E. A.
author_facet Trofimov, V. E.
Pavlov, A. L.
Mokrousova, E. A.
author_sort Trofimov, V. E.
title CFD-моделирование радиатора для воздушного охлаждения микропроцессоров в ог­ра­ни­че­н­ном пространстве
title_short CFD-моделирование радиатора для воздушного охлаждения микропроцессоров в ог­ра­ни­че­н­ном пространстве
title_full CFD-моделирование радиатора для воздушного охлаждения микропроцессоров в ог­ра­ни­че­н­ном пространстве
title_fullStr CFD-моделирование радиатора для воздушного охлаждения микропроцессоров в ог­ра­ни­че­н­ном пространстве
title_full_unstemmed CFD-моделирование радиатора для воздушного охлаждения микропроцессоров в ог­ра­ни­че­н­ном пространстве
title_sort cfd-моделирование радиатора для воздушного охлаждения микропроцессоров в ог­ра­ни­че­н­ном пространстве
title_alt CFD-simulation of radiator for air cooling of microprocessors in a limitided space
description One of the final stages of microprocessors development is heat test. This procedure is performed on a special stand, the main element of which is the switching PCB with one or more mounted microprocessor sockets, chipsets, interfaces, jumpers and other components which provide various modes of microprocessor operation.The temperature of the microprocessor housing is typically changed using a thermoelectric module. The cold surface of the module with controlled temperature is in direct thermal contact with the microprocessor housing designed for cooler installation. On the hot surface of the module a radiator is mounted. The radiator dissipates the cumulative heat flow from both the microprocessor and the module.High density PCB layout, the requirement of free access to the jumpers and interfaces, and the presence of numerous sensors limit the space for radiator mounting and require the use of an extremely compact radiator, especially in air cooling conditions. One of the possible solutions for this problem may reduce the area of the radiator heat-transfer surfaces due to a sharp growth of the heat transfer coefficient without increasing the air flow rate. To ensure a sharp growth of heat transfer coefficient on the heat-transfer surface one should make in the surface one or more dead-end cavities into which the impact air jets would flow.CFD simulation of this type of radiator has been conducted. The heat-aerodynamic characteristics and design recommendations for removing heat from microprocessors in a limited space have been determined.
publisher PE "Politekhperiodika", Book and Journal Publishers
publishDate 2016
url https://www.tkea.com.ua/index.php/journal/article/view/TKEA2016.6.30
work_keys_str_mv AT trofimovve cfdsimulationofradiatorforaircoolingofmicroprocessorsinalimitidedspace
AT pavloval cfdsimulationofradiatorforaircoolingofmicroprocessorsinalimitidedspace
AT mokrousovaea cfdsimulationofradiatorforaircoolingofmicroprocessorsinalimitidedspace
AT trofimovve cfdmodelirovanieradiatoradlâvozdušnogoohlaždeniâmikroprocessorovvograničennomprostranstve
AT pavloval cfdmodelirovanieradiatoradlâvozdušnogoohlaždeniâmikroprocessorovvograničennomprostranstve
AT mokrousovaea cfdmodelirovanieradiatoradlâvozdušnogoohlaždeniâmikroprocessorovvograničennomprostranstve
first_indexed 2025-09-24T17:30:34Z
last_indexed 2025-09-24T17:30:34Z
_version_ 1850410225893376000