Розробка штучної нейронної мережі для інформаційно-вимірювальної системи контролю геометричних розмірів енергетичного обладнання

The paper deals with the development of an artificial neural network for compensating for nonkinematic errors of an information and measurement system (IMS) based on a coordinate measuring arm (CMA). After compensating for kinematic errors using a mathematical model, the proposed back-propagation ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2025
Hauptverfasser: Kacprzyk, Janusz, Zaporozhets, Artur, Kataiev, Denys
Format: Artikel
Sprache:English
Veröffentlicht: General Energy Institute of the National Academy of Sciences of Ukraine 2025
Schlagworte:
Online Zugang:https://systemre.org/index.php/journal/article/view/887
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:System Research in Energy

Institution

System Research in Energy
Beschreibung
Zusammenfassung:The paper deals with the development of an artificial neural network for compensating for nonkinematic errors of an information and measurement system (IMS) based on a coordinate measuring arm (CMA). After compensating for kinematic errors using a mathematical model, the proposed back-propagation neural network corrects non-kinematic errors arising from thermal deformations, noise, and element deformation inaccuracies. Experimental studies conducted on synthetic data demonstrated a significant reduction in the mean square error (MSE) of the coordinates of the measured points and a decrease in measurement uncertainty. The model exhibited high accuracy and stability, which confirms its effectiveness for controlling the geometric parameters of energy equipment.