Розробка штучної нейронної мережі для інформаційно-вимірювальної системи контролю геометричних розмірів енергетичного обладнання

The paper deals with the development of an artificial neural network for compensating for nonkinematic errors of an information and measurement system (IMS) based on a coordinate measuring arm (CMA). After compensating for kinematic errors using a mathematical model, the proposed back-propagation ne...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автори: Kacprzyk, Janusz, Zaporozhets, Artur, Kataiev, Denys
Формат: Стаття
Мова:English
Опубліковано: General Energy Institute of the National Academy of Sciences of Ukraine 2025
Теми:
Онлайн доступ:https://systemre.org/index.php/journal/article/view/887
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:System Research in Energy

Репозитарії

System Research in Energy
Опис
Резюме:The paper deals with the development of an artificial neural network for compensating for nonkinematic errors of an information and measurement system (IMS) based on a coordinate measuring arm (CMA). After compensating for kinematic errors using a mathematical model, the proposed back-propagation neural network corrects non-kinematic errors arising from thermal deformations, noise, and element deformation inaccuracies. Experimental studies conducted on synthetic data demonstrated a significant reduction in the mean square error (MSE) of the coordinates of the measured points and a decrease in measurement uncertainty. The model exhibited high accuracy and stability, which confirms its effectiveness for controlling the geometric parameters of energy equipment.