Improving performance of Python code using rewriting rules technique

Python is a popular programming language used in many areas, but its performance is significantly lower than many compiled languages. We propose an approach to increasing performance of Python code by transforming fragments of code to more efficient languages such as Cython and C++. We use high-leve...

Full description

Saved in:
Bibliographic Details
Date:2020
Main Author: Zhereb, K.A.
Format: Article
Language:Ukrainian
Published: PROBLEMS IN PROGRAMMING 2020
Subjects:
Online Access:https://pp.isofts.kiev.ua/index.php/ojs1/article/view/403
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Problems in programming
Download file: Pdf

Institution

Problems in programming
Description
Summary:Python is a popular programming language used in many areas, but its performance is significantly lower than many compiled languages. We propose an approach to increasing performance of Python code by transforming fragments of code to more efficient languages such as Cython and C++. We use high-level algebraic models and rewriting rules technique for semi-automated code transformation. Performance-critical fragments of code are transformed into a low-level syntax model using Python parser. Then this low-level model is further transformed into a high-level algebraic model that is language-independent and easier to work with. The transformation is automated using rewriting rules implemented in Termware system. We also improve the constructed high-level model by deducing additional information such as data types and constraints. From this enhanced high-level model of code we generate equivalent fragments of code using code generators for Cython and C++ languages. Cython code is seamlessly integrated with Python code, and for C++ code we generate a small utility file in Cython that also integrates this code with Python. This way, the bulk of program code can stay in Python and benefit from its facilities, but performance-critical fragments of code are transformed into more efficient equivalents, improving the performance of resulting program. Comparison of execution times between initial version of Python code, different versions of transformed code and using automatic tools such as Cython compiler and PyPy demonstrates the benefits of our approach – we have achieved performance gains of over 50x compared to the initial version written in Python, and over 2x compared to the best automatic tool we have tested.Problems in programming 2020; 2-3: 115-125