Digital twins in intrusion detection systems based on deep learning
This work aims to improve the accuracy of attack detection in software and hardware systems by utilizing a digital twin in the form of an algebraic model within intrusion detection systems (IDSs) based on deep learning neural networks (DNNs). This approach addresses the shortcomings of training and...
Gespeichert in:
| Datum: | 2025 |
|---|---|
| Hauptverfasser: | Letychevskyi, O.O., Yevdokymov, S.O. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
PROBLEMS IN PROGRAMMING
2025
|
| Schlagworte: | |
| Online Zugang: | https://pp.isofts.kiev.ua/index.php/ojs1/article/view/834 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Problems in programming |
| Завантажити файл: | |
Institution
Problems in programmingÄhnliche Einträge
-
Neurosymbolic models for ensuring cybersecurity in critical cyberphysical systems
von: Yevdokymov, S.O.
Veröffentlicht: (2025) -
APPLICATION OF DEEP LEARNING NEURAL NETWORK FOR CLASSIFICATION OF BIG DATA OF ASTRONOMIC OBSERVATIONS
von: Gorbunov, A. A., et al.
Veröffentlicht: (2017) -
Application of deep learning technology for creating intellectual autonomous machines
von: Bilokon, O.S.
Veröffentlicht: (2020) -
The problem of prediction of the transmission coefficient using neural networks with a limited quantity of data
von: Krysenko, Pavlo
Veröffentlicht: (2025) -
System-ontological analysis the subject area of testing integrated information security system (IISS)
von: Koltyk, M.A.
Veröffentlicht: (2025)