Розподiл псевдошвидкостей заряджених частинок у Pb–Pb i Au–Au зiткненнях за моделлю нейронних мереж

The artificial neural network (ANN) approach is used to model the Pb–Pb and Au–Au collisions on the basis of the Levenberg–Marquardt learning algorithm. We simulate the rapidity distribution for п- and к+- produced in Pb–Pb collisions at different energies and the pseudorapidity di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: El-Bakry, M. Y., El-Dahshan, El-Sayed A., Abd El-Hamied, E. F.
Format: Artikel
Sprache:English
Veröffentlicht: Publishing house "Academperiodika" 2018
Online Zugang:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018342
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Ukrainian Journal of Physics

Institution

Ukrainian Journal of Physics
Beschreibung
Zusammenfassung:The artificial neural network (ANN) approach is used to model the Pb–Pb and Au–Au collisions on the basis of the Levenberg–Marquardt learning algorithm. We simulate the rapidity distribution for п- and к+- produced in Pb–Pb collisions at different energies and the pseudorapidity distribution of charged particles in Au–Au collisions. Our functions obtained within the ANN model show a very good agreement with the experimental data for both types of collisions, which indicates that the trained network takes on the optimal generalization performance. Thus, the ANN model can be widely applied to the modeling of heavy-ion collisions.