Розширений простiр станiв рацiональної sl(2) моделi годена в термiнах полiномiв лягера
We consider the rational Gaudin model with non-zero magnetic field, which physically corresponds to the central spin problem. The space of states is described in terms of separated variables. The states of a spin system are given by rational (up to an exponential factor) functions of these variables...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Publishing house "Academperiodika"
2018
|
| Онлайн доступ: | https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018388 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Ukrainian Journal of Physics |
Репозитарії
Ukrainian Journal of Physics| Резюме: | We consider the rational Gaudin model with non-zero magnetic field, which physically corresponds to the central spin problem. The space of states is described in terms of separated variables. The states of a spin system are given by rational (up to an exponential factor) functions of these variables on the Lagrangian submanifold. We build a representation of the sl(2) algebra of the model in terms of Laguerre polynomials and formulate the functional Bethe ansatz using it. |
|---|