Розширений простiр станiв рацiональної sl(2) моделi годена в термiнах полiномiв лягера

We consider the rational Gaudin model with non-zero magnetic field, which physically corresponds to the central spin problem. The space of states is described in terms of separated variables. The states of a spin system are given by rational (up to an exponential factor) functions of these variables...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Bezvershenko, Yu. V., Holod, P. I.
Format: Artikel
Sprache:English
Veröffentlicht: Publishing house "Academperiodika" 2018
Online Zugang:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018388
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Ukrainian Journal of Physics

Institution

Ukrainian Journal of Physics
Beschreibung
Zusammenfassung:We consider the rational Gaudin model with non-zero magnetic field, which physically corresponds to the central spin problem. The space of states is described in terms of separated variables. The states of a spin system are given by rational (up to an exponential factor) functions of these variables on the Lagrangian submanifold. We build a representation of the sl(2) algebra of the model in terms of Laguerre polynomials and formulate the functional Bethe ansatz using it.