Зсувна та об’ємна в’язкостi ґадронного газу в наближеннi часу релаксацiї та його перевiрка

We concentrate on the calculation of the shear and bulk viscosities of a hadron gas. They define its dissipative dynamics and influence its experimentally measurable elliptic flow. Due to the difficulty of this calculation, the relaxation time approximation (RTA) was used in previous works. As those resu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Moroz, O. N.
Format: Artikel
Sprache:English
Ukrainian
Veröffentlicht: Publishing house "Academperiodika" 2018
Schlagworte:
Online Zugang:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018392
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Ukrainian Journal of Physics

Institution

Ukrainian Journal of Physics
Beschreibung
Zusammenfassung:We concentrate on the calculation of the shear and bulk viscosities of a hadron gas. They define its dissipative dynamics and influence its experimentally measurable elliptic flow. Due to the difficulty of this calculation, the relaxation time approximation (RTA) was used in previous works. As those results have approached the realistic ones, there is a need to find out how accurate RTA is. For this sake, we calculate the viscosities in RTA, by using the cross sections extracted from the ultrarelativistic quantum molecular dynamics (UrQMD) model and compare them with the same ones calculated without RTA. This allows us to find the estimates of errors due to the application of RTA in the calculations of viscosities, which are valid also for other similar models. For instance, in the temperature region 100 MeV < T < 160 MeV at zero chemical potentials, the shear viscosity becomes smaller up to 1.57 times or up to 1.45 times if the averaged relaxation time is used. This has important consequences for the interpretation of the previously made calculations of viscosities and some other related calculations. Within RTA, we also find estimation of the enhancement of the bulk viscosity of a hadron gas because of the nonconservation of particle numbers.