Полiномiальнi iнварiанти Хомфлi для торичних вузлiв і бозонне (q, p)-числення
For the one-parameter Alexander (Jones) skein relation we introduce the Alexander (Jones) “bosonic” q-numbers, and for the two-parameter HOMFLY skein relation we propose the HOMFLY “bosonic” (q, p)-numbers (“bosonic” numbers connected with deformed bosonic oscillators). With the help of these deform...
Збережено в:
Дата: | 2018 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Publishing house "Academperiodika"
2018
|
Теми: | |
Онлайн доступ: | https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018401 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Ukrainian Journal of Physics |
Репозитарії
Ukrainian Journal of PhysicsРезюме: | For the one-parameter Alexander (Jones) skein relation we introduce the Alexander (Jones) “bosonic” q-numbers, and for the two-parameter HOMFLY skein relation we propose the HOMFLY “bosonic” (q, p)-numbers (“bosonic” numbers connected with deformed bosonic oscillators). With the help of these deformed “bosonic” numbers, the corresponding skein relations can be reproduced. Analyzing the introduced “bosonic” numbers, we point out two ways of obtaining the two-parameter HOMFLY skein relation (“bosonic” (q, p)-numbers) from the one-parameter Alexander and Jones skein relations (from the corresponding “bosonic” q-numbers). These two ways of obtaining the HOMFLY skein relation are equivalent. |
---|