Полiномiальнi iнварiанти Хомфлi для торичних вузлiв і бозонне (q, p)-числення

For the one-parameter Alexander (Jones) skein relation we introduce the Alexander (Jones) “bosonic” q-numbers, and for the two-parameter HOMFLY skein relation we propose the HOMFLY “bosonic” (q, p)-numbers (“bosonic” numbers connected with deformed bosonic oscillators). With the help of these deform...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Pavlyuk, A. M.
Формат: Стаття
Мова:English
Опубліковано: Publishing house "Academperiodika" 2018
Теми:
Онлайн доступ:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018401
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Ukrainian Journal of Physics

Репозитарії

Ukrainian Journal of Physics
Опис
Резюме:For the one-parameter Alexander (Jones) skein relation we introduce the Alexander (Jones) “bosonic” q-numbers, and for the two-parameter HOMFLY skein relation we propose the HOMFLY “bosonic” (q, p)-numbers (“bosonic” numbers connected with deformed bosonic oscillators). With the help of these deformed “bosonic” numbers, the corresponding skein relations can be reproduced. Analyzing the introduced “bosonic” numbers, we point out two ways of obtaining the two-parameter HOMFLY skein relation (“bosonic” (q, p)-numbers) from the one-parameter Alexander and Jones skein relations (from the corresponding “bosonic” q-numbers). These two ways of obtaining the HOMFLY skein relation are equivalent.