Полiномiальнi iнварiанти Хомфлi для торичних вузлiв і бозонне (q, p)-числення

For the one-parameter Alexander (Jones) skein relation we introduce the Alexander (Jones) “bosonic” q-numbers, and for the two-parameter HOMFLY skein relation we propose the HOMFLY “bosonic” (q, p)-numbers (“bosonic” numbers connected with deformed bosonic oscillators). With the help of these deform...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Author: Pavlyuk, A. M.
Format: Article
Language:English
Published: Publishing house "Academperiodika" 2018
Online Access:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018401
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Ukrainian Journal of Physics

Institution

Ukrainian Journal of Physics
Description
Summary:For the one-parameter Alexander (Jones) skein relation we introduce the Alexander (Jones) “bosonic” q-numbers, and for the two-parameter HOMFLY skein relation we propose the HOMFLY “bosonic” (q, p)-numbers (“bosonic” numbers connected with deformed bosonic oscillators). With the help of these deformed “bosonic” numbers, the corresponding skein relations can be reproduced. Analyzing the introduced “bosonic” numbers, we point out two ways of obtaining the two-parameter HOMFLY skein relation (“bosonic” (q, p)-numbers) from the one-parameter Alexander and Jones skein relations (from the corresponding “bosonic” q-numbers). These two ways of obtaining the HOMFLY skein relation are equivalent.