Непертурбативна ангармонiчна поправка до формули мехлера для пропагатора гармонiйного осцилятора
We find the possibility of a non-perturbative anharmonic correction to Mehler’s formula for the propagator of a harmonic oscillator. The conditional Wiener measure functional integral with a fourth-order term in the exponent is evaluated using a method alternative to the conventional perturbative ap...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Publishing house "Academperiodika"
2018
|
| Online Zugang: | https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018428 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Ukrainian Journal of Physics |
Institution
Ukrainian Journal of Physics| Zusammenfassung: | We find the possibility of a non-perturbative anharmonic correction to Mehler’s formula for the propagator of a harmonic oscillator. The conditional Wiener measure functional integral with a fourth-order term in the exponent is evaluated using a method alternative to the conventional perturbative approach. In contrast to the conventional perturbation theory, we expand the term linear in the integration variable in the exponent into a power series. The case where thestarting point of the propagator is zero is discussed. The results are presented in analytical form for positive and negative frequencies. |
|---|