Асимптотичнi хвильовi розв’язки моделi середовища з осциляторами Ван дер Поля

A one-dimensional mathematical model for a complex medium with van der Pol oscillators has been studied. Using the Bogolyubov–Mitropolsky method, the wave solutions for a weakly nonlinear model are derived, with their amplitudes being described by a three-dimensional dynamical system analyzed in mor...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Danylenko, V. A., Skurativskyi, S. I., Skurativska, I. A.
Формат: Стаття
Мова:English
Ukrainian
Опубліковано: Publishing house "Academperiodika" 2018
Теми:
Онлайн доступ:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018530
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Ukrainian Journal of Physics

Репозитарії

Ukrainian Journal of Physics
Опис
Резюме:A one-dimensional mathematical model for a complex medium with van der Pol oscillators has been studied. Using the Bogolyubov–Mitropolsky method, the wave solutions for a weakly nonlinear model are derived, with their amplitudes being described by a three-dimensional dynamical system analyzed in more details by numerical and qualitative methods. In particular, periodic, multiperiodic, and chaotic trajectories are found in the phase space of the dynamical system. Bifurcations of those regimes were considered using the Poincar´e section technique. Exact solutions are derived in the case where the three-dimensional system for amplitudes is reduced to the two-dimensional one.