Загальні властивості струмів взаємодії високоспінових ферміонів і їх перевірка в πN-розсіюванні

The currents of higher-spin fermion interactions with zero- and half-spin particles are derived. They can be used for the N*(J) ↔ Nπ-transitions (N*(J) is thenucleon resonance with the J spin). In accordance with the theorem on currents and fields, the spin-tensors of these currents are traceless, a...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Kulish, Yu.V., Rybachuk, E.V.
Формат: Стаття
Мова:English
Опубліковано: Publishing house "Academperiodika" 2021
Теми:
-
Онлайн доступ:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2021159
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Ukrainian Journal of Physics

Репозитарії

Ukrainian Journal of Physics
Опис
Резюме:The currents of higher-spin fermion interactions with zero- and half-spin particles are derived. They can be used for the N*(J) ↔ Nπ-transitions (N*(J) is thenucleon resonance with the J spin). In accordance with the theorem on currents and fields, the spin-tensors of these currents are traceless, and their products with the γ-matrices and the higher-spin fermion momentum vanish, similarly to the field spin-tensors. Such currents are derived explicitly for J=3/2and 5/2. It is shown that, in the present approach, the scale dimension of a higher spin fermion propagator equals to –1 for any J ≥ 1/2. The calculations indicate that the off-mass-shell N* contributions to the s-channel amplitudes correspond to J = JπN only ( JπN is the total angular momentum of the πN-system). As contrast, in the usually exploited approaches, such non-zero amplitudes correspond to 1/2 ≤  JπN ≤ J. In particular, the usually exploited approaches give non-zero off-mass-shell contributions of the ∆(1232)-resonance to the amplitudes S31, P31( JπN = 1/2) and P33, D33(JπN = 3/2), but our approach – to P33 and D33 only. The comparison of these results with the data of the partial wave analysis on the S31-amplitude in the ∆(1232)-region shows the better agreement for the present approach.