Загальні властивості струмів взаємодії високоспінових ферміонів і їх перевірка в πN-розсіюванні
The currents of higher-spin fermion interactions with zero- and half-spin particles are derived. They can be used for the N*(J) ↔ Nπ-transitions (N*(J) is thenucleon resonance with the J spin). In accordance with the theorem on currents and fields, the spin-tensors of these currents are traceless, a...
Gespeichert in:
| Datum: | 2021 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Publishing house "Academperiodika"
2021
|
| Schlagworte: | |
| Online Zugang: | https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2021159 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Ukrainian Journal of Physics |
Institution
Ukrainian Journal of Physics| Zusammenfassung: | The currents of higher-spin fermion interactions with zero- and half-spin particles are derived. They can be used for the N*(J) ↔ Nπ-transitions (N*(J) is thenucleon resonance with the J spin). In accordance with the theorem on currents and fields, the spin-tensors of these currents are traceless, and their products with the γ-matrices and the higher-spin fermion momentum vanish, similarly to the field spin-tensors. Such currents are derived explicitly for J=3/2and 5/2. It is shown that, in the present approach, the scale dimension of a higher spin fermion propagator equals to –1 for any J ≥ 1/2. The calculations indicate that the off-mass-shell N* contributions to the s-channel amplitudes correspond to J = JπN only ( JπN is the total angular momentum of the πN-system). As contrast, in the usually exploited approaches, such non-zero amplitudes correspond to 1/2 ≤ JπN ≤ J. In particular, the usually exploited approaches give non-zero off-mass-shell contributions of the ∆(1232)-resonance to the amplitudes S31, P31( JπN = 1/2) and P33, D33(JπN = 3/2), but our approach – to P33 and D33 only. The comparison of these results with the data of the partial wave analysis on the S31-amplitude in the ∆(1232)-region shows the better agreement for the present approach. |
|---|