Динаміка загальної моделі типу IX за Біанкі поблизу космологічної сингулярності

Half a century ago, Belinsky and Khalatnikov proposed a generic solution of the Einstein equations near their cosmological singularity, basing on a generalization of the homogeneous model of Bianchi type IX. The consideration of the evolution of the most general non-diagonal case of this model is si...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2022
Автор: Parnovsky, S.L.
Формат: Стаття
Мова:English
Опубліковано: Publishing house "Academperiodika" 2022
Теми:
Онлайн доступ:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2021382
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Ukrainian Journal of Physics

Репозитарії

Ukrainian Journal of Physics
Опис
Резюме:Half a century ago, Belinsky and Khalatnikov proposed a generic solution of the Einstein equations near their cosmological singularity, basing on a generalization of the homogeneous model of Bianchi type IX. The consideration of the evolution of the most general non-diagonal case of this model is significantly simplified, if it is assumed that, when approaching the singularity t = 0, it reduces to the so-called asymptotic dynamics, at which inequality Γ1 ≫ Γ2 ≫ Γ3 holds. It has been suggested that this inequality continues to be true from the moment of its first fulfilment up to the singularity of space-time. We analyze this assumption and show that it is incorrect in the general case. However, it is shown that in any case there exists a time t0, after which this assumption becomes true. The value of t0 is the smaller, the less is the degree of non-diagonality of the model. Some details of the behavior of the non-diagonal homogeneous model of Bianchi type IX are considered at the stage of asymptotic dynamics of approaching the singularity.