Models of Deformation Dependences of Total Integrated Intensity of Dynamical Diffraction in Single Crystals for Various Diffraction Conditions

В работе с помощью теории Чуховского—Петрашеня для деформационной зависимости (ДЗ) интегральной интенсивности динамической дифракции (ИИДД) в кристаллах без дефектов показан характер изменения ДЗ ИИДД с толщиной кристаллов и с вариацией других условий дифракции. На этой основе, а также при использов...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Brovchuk, S.M., Molodkin, V.B., Nizkova, A.I., Rudnytska, I.I., Grankina, G.L., Lizunov, V.V., Lizunova, S.V., Sheludchenko, B.V., Skakunova, E.S., Dmitriev, S.V., Zabolotnyi, I.N., Katasonov, A.A., Zhuravlev, B.F., Lekhnyak, R.V., Skapa, L.N., Irha, N.P.
Формат: Стаття
Мова:English
Опубліковано: Інститут металофізики ім. Г.В. Курдюмова НАН України 2014
Назва видання:Металлофизика и новейшие технологии
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/106993
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Models of Deformation Dependences of Total Integrated Intensity of Dynamical Diffraction in Single Crystals for Various Diffraction Conditions / S.M. Brovchuk, V.B. Molodkin, A.I. Nizkova, I.I. Rudnytska, G.L. Grankina, V.V. Lizunov, S.V. Lizunova, B.V. Sheludchenko, E.S. Skakunova, S.V. Dmitriev, I.N. Zabolotnyi, A.A. Katasonov, B.F. Zhuravlev, R.V. Lekhnyak, L.N. Skapa, N.P. Irha // Металлофизика и новейшие технологии. — 2014. — Т. 36, № 8. — С. 1035-1048. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-106993
record_format dspace
spelling irk-123456789-1069932016-10-11T03:02:12Z Models of Deformation Dependences of Total Integrated Intensity of Dynamical Diffraction in Single Crystals for Various Diffraction Conditions Brovchuk, S.M. Molodkin, V.B. Nizkova, A.I. Rudnytska, I.I. Grankina, G.L. Lizunov, V.V. Lizunova, S.V. Sheludchenko, B.V. Skakunova, E.S. Dmitriev, S.V. Zabolotnyi, I.N. Katasonov, A.A. Zhuravlev, B.F. Lekhnyak, R.V. Skapa, L.N. Irha, N.P. Взаимодействия излучения и частиц с конденсированным веществом В работе с помощью теории Чуховского—Петрашеня для деформационной зависимости (ДЗ) интегральной интенсивности динамической дифракции (ИИДД) в кристаллах без дефектов показан характер изменения ДЗ ИИДД с толщиной кристаллов и с вариацией других условий дифракции. На этой основе, а также при использовании ряда экспериментов с реальными дефектными кристаллами и результатов теории полной интегральной интенсивности динамической дифракции (ПИИДД) в кристаллах с дефектами без изгиба построена аналитическая модель ДЗ ПИИДД в кристаллах с дефектами, пригодная для диагностики параметров структурных дефектов в кристаллах. В роботі за допомогою теорії Чуховського—Петрашеня для деформаційної залежности (ДЗ) інтеґральної інтенсивности динамічної дифракції (ІІДД) у кристалах без дефектів показано характер зміни ДЗ ІІДД із товщиною кристалу та з варіяцією інших умов дифракції. На цій основі, а також при використанні ряду експериментів із реальними дефектними кристалами і результатів теорії повної інтеґральної інтенсивности динамічної дифракції (ПІІДД) у кристалах з дефектами без вигину побудовано аналітичну модель ДЗ ПІІДД у кристалах з дефектами, придатну для діягностики параметрів структурних дефектів у кристалах. The paper shows the pattern of change in the deformation dependences (DD) of integrated intensity of dynamical diffraction (IIDD) with crystal thickness and with variation of other diffraction conditions by means of the Chukhovskii—Petrashen theory for the DD of IIDD in defect-free crystals. Relying on this and numerous other experiments with real defective crystals as well as the results of total integrated intensity of dynamical diffraction (TIIDD) in crystals with defects without bend, an analytical model of the DD of TIIDD in crystals with defects is developed, which is feasible for the diagnostics of structural defects in crystals. 2014 Article Models of Deformation Dependences of Total Integrated Intensity of Dynamical Diffraction in Single Crystals for Various Diffraction Conditions / S.M. Brovchuk, V.B. Molodkin, A.I. Nizkova, I.I. Rudnytska, G.L. Grankina, V.V. Lizunov, S.V. Lizunova, B.V. Sheludchenko, E.S. Skakunova, S.V. Dmitriev, I.N. Zabolotnyi, A.A. Katasonov, B.F. Zhuravlev, R.V. Lekhnyak, L.N. Skapa, N.P. Irha // Металлофизика и новейшие технологии. — 2014. — Т. 36, № 8. — С. 1035-1048. — Бібліогр.: 3 назв. — англ. 1024-1809 PACS: 61.05.cc, 61.05.cp, 61.72.Dd, 61.72.J-, 61.72.Nn DOI: http://dx.doi.org/10.15407/mfint.36.08.1035 http://dspace.nbuv.gov.ua/handle/123456789/106993 en Металлофизика и новейшие технологии Інститут металофізики ім. Г.В. Курдюмова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Взаимодействия излучения и частиц с конденсированным веществом
Взаимодействия излучения и частиц с конденсированным веществом
spellingShingle Взаимодействия излучения и частиц с конденсированным веществом
Взаимодействия излучения и частиц с конденсированным веществом
Brovchuk, S.M.
Molodkin, V.B.
Nizkova, A.I.
Rudnytska, I.I.
Grankina, G.L.
Lizunov, V.V.
Lizunova, S.V.
Sheludchenko, B.V.
Skakunova, E.S.
Dmitriev, S.V.
Zabolotnyi, I.N.
Katasonov, A.A.
Zhuravlev, B.F.
Lekhnyak, R.V.
Skapa, L.N.
Irha, N.P.
Models of Deformation Dependences of Total Integrated Intensity of Dynamical Diffraction in Single Crystals for Various Diffraction Conditions
Металлофизика и новейшие технологии
description В работе с помощью теории Чуховского—Петрашеня для деформационной зависимости (ДЗ) интегральной интенсивности динамической дифракции (ИИДД) в кристаллах без дефектов показан характер изменения ДЗ ИИДД с толщиной кристаллов и с вариацией других условий дифракции. На этой основе, а также при использовании ряда экспериментов с реальными дефектными кристаллами и результатов теории полной интегральной интенсивности динамической дифракции (ПИИДД) в кристаллах с дефектами без изгиба построена аналитическая модель ДЗ ПИИДД в кристаллах с дефектами, пригодная для диагностики параметров структурных дефектов в кристаллах.
format Article
author Brovchuk, S.M.
Molodkin, V.B.
Nizkova, A.I.
Rudnytska, I.I.
Grankina, G.L.
Lizunov, V.V.
Lizunova, S.V.
Sheludchenko, B.V.
Skakunova, E.S.
Dmitriev, S.V.
Zabolotnyi, I.N.
Katasonov, A.A.
Zhuravlev, B.F.
Lekhnyak, R.V.
Skapa, L.N.
Irha, N.P.
author_facet Brovchuk, S.M.
Molodkin, V.B.
Nizkova, A.I.
Rudnytska, I.I.
Grankina, G.L.
Lizunov, V.V.
Lizunova, S.V.
Sheludchenko, B.V.
Skakunova, E.S.
Dmitriev, S.V.
Zabolotnyi, I.N.
Katasonov, A.A.
Zhuravlev, B.F.
Lekhnyak, R.V.
Skapa, L.N.
Irha, N.P.
author_sort Brovchuk, S.M.
title Models of Deformation Dependences of Total Integrated Intensity of Dynamical Diffraction in Single Crystals for Various Diffraction Conditions
title_short Models of Deformation Dependences of Total Integrated Intensity of Dynamical Diffraction in Single Crystals for Various Diffraction Conditions
title_full Models of Deformation Dependences of Total Integrated Intensity of Dynamical Diffraction in Single Crystals for Various Diffraction Conditions
title_fullStr Models of Deformation Dependences of Total Integrated Intensity of Dynamical Diffraction in Single Crystals for Various Diffraction Conditions
title_full_unstemmed Models of Deformation Dependences of Total Integrated Intensity of Dynamical Diffraction in Single Crystals for Various Diffraction Conditions
title_sort models of deformation dependences of total integrated intensity of dynamical diffraction in single crystals for various diffraction conditions
publisher Інститут металофізики ім. Г.В. Курдюмова НАН України
publishDate 2014
topic_facet Взаимодействия излучения и частиц с конденсированным веществом
url http://dspace.nbuv.gov.ua/handle/123456789/106993
citation_txt Models of Deformation Dependences of Total Integrated Intensity of Dynamical Diffraction in Single Crystals for Various Diffraction Conditions / S.M. Brovchuk, V.B. Molodkin, A.I. Nizkova, I.I. Rudnytska, G.L. Grankina, V.V. Lizunov, S.V. Lizunova, B.V. Sheludchenko, E.S. Skakunova, S.V. Dmitriev, I.N. Zabolotnyi, A.A. Katasonov, B.F. Zhuravlev, R.V. Lekhnyak, L.N. Skapa, N.P. Irha // Металлофизика и новейшие технологии. — 2014. — Т. 36, № 8. — С. 1035-1048. — Бібліогр.: 3 назв. — англ.
series Металлофизика и новейшие технологии
work_keys_str_mv AT brovchuksm modelsofdeformationdependencesoftotalintegratedintensityofdynamicaldiffractioninsinglecrystalsforvariousdiffractionconditions
AT molodkinvb modelsofdeformationdependencesoftotalintegratedintensityofdynamicaldiffractioninsinglecrystalsforvariousdiffractionconditions
AT nizkovaai modelsofdeformationdependencesoftotalintegratedintensityofdynamicaldiffractioninsinglecrystalsforvariousdiffractionconditions
AT rudnytskaii modelsofdeformationdependencesoftotalintegratedintensityofdynamicaldiffractioninsinglecrystalsforvariousdiffractionconditions
AT grankinagl modelsofdeformationdependencesoftotalintegratedintensityofdynamicaldiffractioninsinglecrystalsforvariousdiffractionconditions
AT lizunovvv modelsofdeformationdependencesoftotalintegratedintensityofdynamicaldiffractioninsinglecrystalsforvariousdiffractionconditions
AT lizunovasv modelsofdeformationdependencesoftotalintegratedintensityofdynamicaldiffractioninsinglecrystalsforvariousdiffractionconditions
AT sheludchenkobv modelsofdeformationdependencesoftotalintegratedintensityofdynamicaldiffractioninsinglecrystalsforvariousdiffractionconditions
AT skakunovaes modelsofdeformationdependencesoftotalintegratedintensityofdynamicaldiffractioninsinglecrystalsforvariousdiffractionconditions
AT dmitrievsv modelsofdeformationdependencesoftotalintegratedintensityofdynamicaldiffractioninsinglecrystalsforvariousdiffractionconditions
AT zabolotnyiin modelsofdeformationdependencesoftotalintegratedintensityofdynamicaldiffractioninsinglecrystalsforvariousdiffractionconditions
AT katasonovaa modelsofdeformationdependencesoftotalintegratedintensityofdynamicaldiffractioninsinglecrystalsforvariousdiffractionconditions
AT zhuravlevbf modelsofdeformationdependencesoftotalintegratedintensityofdynamicaldiffractioninsinglecrystalsforvariousdiffractionconditions
AT lekhnyakrv modelsofdeformationdependencesoftotalintegratedintensityofdynamicaldiffractioninsinglecrystalsforvariousdiffractionconditions
AT skapaln modelsofdeformationdependencesoftotalintegratedintensityofdynamicaldiffractioninsinglecrystalsforvariousdiffractionconditions
AT irhanp modelsofdeformationdependencesoftotalintegratedintensityofdynamicaldiffractioninsinglecrystalsforvariousdiffractionconditions
first_indexed 2025-07-07T19:17:51Z
last_indexed 2025-07-07T19:17:51Z
_version_ 1837016937918365696
fulltext 1035 ВЗАИМОДЕЙСТВИЯ ИЗЛУЧЕНИЯ И ЧАСТИЦ С КОНДЕНСИРОВАННЫМ ВЕЩЕСТВОМ PACS numbers: 61.05.cc, 61.05.cp, 61.72.Dd, 61.72.J-, 61.72.Nn Models of Deformation Dependences of Total Integrated Intensity of Dynamical Diffraction in Single Crystals for Various Diffraction Conditions S. M. Brovchuk, V. B. Molodkin, A. I. Nizkova, I. I. Rudnytska, G. I. Grankina, V. V. Lizunov, S. V. Lizunova, B. V. Sheludchenko, E. S. Skakunova, S. V. Dmitriev, I. N. Zabolotnyi, A. A. Katasonov, B. F. Zhuravlev, R. V. Lekhnyak, L. N. Skapa, and N. P. Irha G. V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine The paper shows the pattern of change in the deformation dependences (DD) of integrated intensity of dynamical diffraction (IIDD) with crystal thickness and with variation of other diffraction conditions by means of the Chukhov- skii—Petrashen theory for the DD of IIDD in defect-free crystals. Relying on this and numerous other experiments with real defective crystals as well as the results of total integrated intensity of dynamical diffraction (TIIDD) in crystals with defects without bend, an analytical model of the DD of TIIDD in crystals with defects is developed, which is feasible for the diagnostics of structural defects in crystals. The heuristic model constructed for the DD of TIIDD in crystals with defects considers the DD of reflectivity and absorptive power of crystal, whose contribution is determined by model parameters (, , , ) for both Bragg and diffuse components of TIIDD. As found, the suffi- ciently accurate DD description with fixed parameters and single description expressions is only achieved in certain narrow ranges of deformation radii. However, these parameters are selectively dependent on each set of parame- ters of diffraction conditions (wavelengths, crystal thicknesses, reflection indexes, diffraction geometries, etc.). As shown, the construction of the heu- ristic model of the DD of TIIDD in crystals with defects as a diagnostic method has only become possible because we were able to factorize the effect of micro- defects and deformation parameter on coherent and diffuse components of TIIDD, separately; but it is important to save non-factorization of their effect on total IIDD. В роботі за допомогою теорії Чуховського—Петрашеня для деформаційної залежности (ДЗ) інтеґральної інтенсивности динамічної дифракції (ІІДД) Металлофиз. новейшие технол. / Metallofiz. Noveishie Tekhnol. 2014, т. 36, № 8, сс. 1035—1048 Оттиски доступны непосредственно от издателя Фотокопирование разрешено только в соответствии с лицензией 2014 ИМФ (Институт металлофизики им. Г. В. Курдюмова НАН Украины) Напечатано в Украине. 1036 S. M. BROVCHUK, V. B. MOLODKIN, A. I. NIZKOVA et al. у кристалах без дефектів показано характер зміни ДЗ ІІДД із товщиною кристалу та з варіяцією інших умов дифракції. На цій основі, а також при використанні ряду експериментів із реальними дефектними кристалами і результатів теорії повної інтеґральної інтенсивности динамічної дифрак- ції (ПІІДД) у кристалах з дефектами без вигину побудовано аналітичну модель ДЗ ПІІДД у кристалах з дефектами, придатну для діягностики па- раметрів структурних дефектів у кристалах. Одержано евристичні вирази для ПІІДД у кристалах з дефектами, що враховують ДЗ поглинальних і відбивних здатностей кристалів, внесок яких визначається параметрами моделі (, , , ) як для Бреґґової, так і для дифузної складової ПІІДД. Встановлено, що достатньо точний опис ДЗ досягається з фіксованими па- раметрами і єдиного виду виразами тільки у визначених вузьких діяпазо- нах радіюсів деформації. Проте ці параметри виявляються вибірково за- лежними від кожного набору характеристик умов дифракції (довжини хвилі, товщини кристалів, індексів відбивання, геометрії дифракції та ін.). Показано, що евристично побудувати модель ДЗ ПІІДД у кристалах з дефектами як діягностичний метод виявилося можливим тільки завдяки тому, що вдалося факторизувати вплив мікродефектів і параметра дефор- мації окремо на когерентну і на дифузну складові ПІІДД, але вберегти не- факторизованість їх впливу на сумарну інтенсивність ІІДД. В работе с помощью теории Чуховского—Петрашеня для деформационной зависимости (ДЗ) интегральной интенсивности динамической дифракции (ИИДД) в кристаллах без дефектов показан характер изменения ДЗ ИИДД с толщиной кристаллов и с вариацией других условий дифракции. На этой основе, а также при использовании ряда экспериментов с реальными де- фектными кристаллами и результатов теории полной интегральной ин- тенсивности динамической дифракции (ПИИДД) в кристаллах с дефекта- ми без изгиба построена аналитическая модель ДЗ ПИИДД в кристаллах с дефектами, пригодная для диагностики параметров структурных дефек- тов в кристаллах. Полученные эвристически выражения для ДЗ ПИИДД в кристаллах с дефектами учитывают ДЗ поглощательных и отражательных способностей кристаллов, вклад которых определяется параметрами мо- дели (, , , ) как для брэгговской, так и для диффузной составляющих ПИИДД. Установлено, что достаточно точное описание ДЗ достигается с фиксированными параметрами и единого вида выражениями только в определённых узких диапазонах радиусов деформации. Однако эти пара- метры оказываются избирательно зависящими от каждого набора харак- теристик условий дифракции (длины волны, толщины кристаллов, индек- сов отражения, геометрии дифракции и др.). Показано, что эвристически построить модель ДЗ ПИИДД в кристаллах с дефектами как диагностиче- ский метод оказалось возможным только благодаря тому, что удалось факторизовать влияние микродефектов и параметра деформации отдельно на когерентную и на диффузную составляющие ПИИДД, но уберечь не- факторизованность их влияния на суммарную интенсивность ИИДД. Key words: total integrated intensity of dynamical diffraction, microdefects, deformation dependences. (Received 30 June, 2014) MODELS OF DEFORMATION DEPENDENCES OF TOTAL INTEGRATED INTENSITY 1037 1. INTRODUCTION The widely used X-ray defect diagnostics, based on the theory of kine- matic scattering, though having a limited sensitivity, still makes it possible to determine the degree of crystal structure imperfection. However, it is non-informative for diagnostics of several defect types, which are simultaneously present in crystals. Here, for the total inte- grated intensity Ri as well as its Bragg RiB and diffuse RiD components, the following expressions are used: i iB iD ,R R R   2 iB iP ,LR R e 2 iD iP (1 ),LR R e         22 r iP 0 ( | |) ,  , sin2 C Qt R Q H (1) i iB iD iP ,R R R R   2 iD 2 iB (1 ) 2 , L L R e L R e     where L is an index of power of Krivoglaz—Debye—Waller factor,  is a wavelength, t is a crystal thickness, B is a Bragg angle, Hr is an H-th Fourier component of the real part of crystal susceptibility, 0 is a co- sine of incidence angle. In this case, the Krivoglaz—Debye—Waller factor eL is the only structurally sensitive parameter, so the information on the total struc- tural imperfection of the sample can only be found relying on it. Be- sides, as one can see from formulae (1), in the kinematic theory, the structure information is factorized with diffraction conditions, there- fore any changes of experimental parameters on which the dependence is the same for Bragg and diffuse Ri components do not affect the ratio of coherent and diffuse components. This makes the total integrated intensity of kinematic diffraction as non-informative in terms of structure, and defects diagnostics is only feasible if one manages to separate experimentally RiB and RiD compo- nents. Several defect types can only be determined if crystals are investi- gated under dynamical diffraction conditions. For example, in the expressions (2) and (3) for total integrated in- tensity of dynamical diffraction (TIIDD) in crystals with defects, the parameters describing diffraction conditions are mixed with parame- ters that are responsible for structure of sample; for ‘thin’ crystal 0 0 ( 1,   / )l l t    , * i 0 0 0 ds ip exp( )[ exp( ) 2 exp( )],( )   L sR l B e I h l LR l     (2) where 0 r /(2sin2 )B C    H ; 1038 S. M. BROVCHUK, V. B. MOLODKIN, A. I. NIZKOVA et al. for ‘thick’ crystal 0 0 ( 5,   / )l l t    , r 0 ds i 0 2 [ ( ) ] exp ( )   , 4 sin2 sin2 L L Lh s L hh Ce Ce l R i h Ce lCe                    H (3)  0 2 1 9 1 , 8 128 i x x x     ds ds exp( ) exp / ( )3 . 2 1   L h L h l Ce Ce          As a result, the coherent and diffuse components have much stronger and different sensitivity to diffraction conditions [1], unlike those in the kinematic theory (1). The sensitivity of TIIDD to the thickness, wavelength, angle of beam orientation in respect to the crystal surface, which is unique and dif- ferent for various types of defects, permits us to construct a new gen- eration of diagnostic methods. The proposed method is not based on the change in the diffraction conditions but, rather, on the study of defect structure, which is car- ried out by introduction of controlled crystal macrodeformation. The theory developed by Chukhovskii and Petrashen [2], which de- scribes the effect of elastic deformation on the integrated intensity of dynamical diffraction, is applicable only in the case of a defect-free sample; its extension to samples with damaged structure implies very complicated mathematical instruments, which questions the possibil- ity to use this theory in practical defect diagnostics. The purpose of this work is to study the basic possibility to describe deformation dependences (DD) of TIIDD in real crystals; it can also give results in characterizing crystal defects. 2. THEORETICAL DESCRIPTION The solution [3] of the Takagi equations in partial derivatives makes it possible to determine the integrated intensity of dynamical diffraction for the elastically bent ideal crystal: 01 i 0 , ,  ,  , [1 exp(( ) /2)] M R M M M D B B e        21 2 2 1  ch( )ch[( / 2) ln( 1 ( ) )] , 1 1 ( ) d M M D D D D               (4) where   x/t,   0/H, D  BT, 2 1 ,D D    i r /2 ,M t   H H  2 0 1 r 2 0 0 r r i 1 0 0 sin 1 (1 ) , , , (1 ) 1 1 2 , t B T r t M M M C d                          H H H MODELS OF DEFORMATION DEPENDENCES OF TOTAL INTEGRATED INTENSITY 1039  is the angle between the reflecting plane and the normal to the crys- tal surface, 0  cos(B  ), 1  cos(B  ),  is Poisson’s ratio, 0 is the linear photoelectric absorption coefficient, r is the radius of the curva- ture of crystal cylindrical bend, 2 2 2 1/2/( )d a h k l   , a is lattice con- stant, h, k, l are the Miller indexes, 0i  is the imaginary part of the Fourier component of crystal polarizability. Figure 1 shows DD of IIDD of the ideal crystal normalized to IIDD of unbent ideal crystal (solid lines): ib 0 ( )/R BT R , these were calculated with the formula from the Chukhovskii and Petrashen paper for vari- ous thicknesses of the silicon sample and different wavelengths of the X-ray radiation used. For different thicknesses of the silicon sample, when 220 Laue re- flections of FeK-radiation are used, the calculated values of IIDD of a b c d Fig. 1. DD of IIDD of elastically bent ideal crystal normalized to IIDD of unbent ideal crystal: Rib(BT)/R0 curves are calculated with the formula from the Chu- khovskii and Petrashen paper for various thicknesses of the silicon sample (1–195 m, 2–390 m, 3–565 m, 4–800 m, 5–1110 m) and 220 Laue reflections of radiation with various wavelengths. Markers represent the DD Rib(BT)/R0, which were experimentally obtained by Kislovskii in Ref. [3]. 1040 S. M. BROVCHUK, V. B. MOLODKIN, A. I. NIZKOVA et al. unbent ideal crystal are: Ri0(195 m)  1.1110 5, Ri0(390 m)  2.9810 6, Ri0(565 m)  2.410 7, Ri0(800 m)  2.6410 9, Ri0(1110 m)  2.3310 12. For different thicknesses of the silicon sample, when 220 Laue re- flections of CuK-radiation are used, the calculated values of IIDD of unbent ideal crystal are: Ri0(195 m)  7.7610 6, Ri0(390 m)  7.5510 6, Ri0(565 m)  5.52510 6, Ri0(800 m)  2.0510 6, Ri0(1110 m)  2.4810 7. For different thicknesses of the silicon sample, when 220 Laue re- flections of CuK-radiation are used, the calculated values of IIDD of unbent ideal crystal are: Ri0(195 m)  6.75510 6, Ri0(390 m)  6.89510 6, Ri0(565 m)  6.3810 6, Ri0(800 m)  4.39510 6, Ri0(1110 m)  1.5810 6. For different thicknesses of the silicon sample, when 220 Laue re- flections of MoK-radiation are used, the calculated values of IIDD of unbent ideal crystal are: Ri0(195 m)  1.5310 6, Ri0(390 m)  2.4210 6, Ri0(565 m)  2.9110 6, Ri0(800 m)  3.3210 6, Ri0(1110 m)  3.6510 6. In Figure 1, one can see the best fit with experimental DD of IIDD calculated for thickness of sample t  390 m. It is also understandable from Fig. 1 that any change in the asymmetry degree of reflection does not affect the shape of DD IIDD in the given interval of the range e f g h Continuation of Fig. 1. MODELS OF DEFORMATION DEPENDENCES OF TOTAL INTEGRATED INTENSITY 1041 change. Their shapes change significantly with crystal thickness change. Therefore, to develop the universal model of DD of IIDD it is neces- sary to introduce multipliers describing DD of both reflective and ab- sorptive power of the crystal. For the coherent component, they must be such as to describe correctly all DD of IIDD calculated relying on the theory [2]; these DD of IIDD are shown in Fig. 1. So, the analytical type of the proposed model is described as follow:                        2 2 2 2 0 0 0 ib i0 2 2 / (1 ) 1 exp . M M M R R BT B T r r r (5) 3. DETERMINING COEFFICIENTS OF THE MODEL OF DEFORMATION DEPENDENCES OF IIDD The results of determining the model of the deformation dependences of IIDD are presented by formulas (6)—(10), (6.1)—(10.1) and (6.2)— (10.2) for each case illustrated by Figs. 2—6 and Tables 1 and 2. Solid lines in Fig. 2 are calculated according to theory [2]; the dashed line was calculated for model (6), the goodness of fitting (GOF) to the solid line is 0.0145, the dotted line is the calculation for model (6), GOF  0.0321; the dash-and-dot line is the calculation for model (6.1), GOF  0.112; dash-and-dot-dot line is the calculation for model (6.2), GOF  0.109: 2 2 5 ib i0 0 12 2 2 12 2 2 0 0 / (1 1.16 0.74 )(1 7.37 10 / 1.1 10 / ) exp( 2.15 10 / ), R R BT B T M r M r M r           (6) 2 2 5 ib i0 0 12 2 2 13 2 2 0 0 / (1 1.16 0.74 )(1 7.05 10 / 3.02 10 / ) exp( 2.325 10 / ), R R BT B T M r M r M r           (6.1) 2 2 5 ib i0 0 12 2 2 13 2 2 0 0 / (1 1.16 0.74 )(1 2.18 10 / 1.26 10 / ) exp( 1.085 10 / ). R R BT B T M r M r M r           (6.2) Solid lines in Fig. 3 are calculated according to theory [2]; the dashed line is the calculation for model (7), GOF  0.0145, the dotted line is the calculation for model (7), GOF  0.0872; the dash-and-dot line is the calculation for model (7.1), GOF  0.116; dash-and-dot-dot line is the calculation for model (7.2), GOF  0.068: 2 2 6 ib i0 0 11 2 2 12 2 2 0 0 / (1 0.2 0.78 )(1 1.54 10 / 9.035 10 / ) exp( 1.385 10 / ), R R BT B T M r M r M r           (7) 2 2 6 ib i0 0 / (1 0.2 0.78 )(1 4.21 10 /R R BT B T M r      (7.1) 1042 S. M. BROVCHUK, V. B. MOLODKIN, A. I. NIZKOVA et al. 12 2 2 13 2 2 0 0 9.99 10 / ) exp( 1.04 10 / ),M r M r    2 2 6 ib i0 0 12 2 2 12 2 2 0 0 / (1 0.2 0.78 )(1 3.306 10 / 4.57 10 / ) exp( 5.33 10 / ). R R BT B T M r M r M r           (7.2) Solid lines in Fig. 4 are calculated according to theory [2]; the dashed line is the calculation for model (8), GOF  0.0181, the dotted line is the calculation for model (8), GOF  0.117; the dash-and-dot line is the calculation for model (8.1), GOF  0.0362; dash-and-dot-dot line Fig. 2. DD of IIDD of elastically bent ideal crystal normalized to IIDD of un- bent ideal crystal: Rib(BT)/R0. Fig. 3. DD of IIDD of elastically bent ideal crystal normalized to IIDD of un- bent ideal crystal: Rib(BT)/R0. MODELS OF DEFORMATION DEPENDENCES OF TOTAL INTEGRATED INTENSITY 1043 is the calculation for model (8.2), GOF  0.103: 2 2 6 ib i0 0 11 2 2 12 2 2 0 0 / (1 0.079 1.025 )(1 8.62 10 / 3.8 10 / ) exp( 2.038 10 / ), R R BT B T M r M r M r           (8) 2 2 6 ib i0 0 13 2 2 13 2 2 0 0 / (1 0.079 1.025 )(1 5.78 10 / 1.08 10 / ) exp( 2.031 10 / ), R R BT B T M r M r M r           (8.1)           2 2 6 ib i0 0 12 2 2 13 2 2 0 0 / (1 0.079 1.025 )(1 3.561 10 / 4.151 10 / ) exp( 1.092 10 / ). R R BT B T M r M r M r (8.2) Solid lines in Fig. 5 are calculated according to theory [2]; the dashed line is the calculation for model (9), GOF  0.007, the dotted line is the calculation for model (9), GOF  0.062; the dash-and-dot line is the calculation for model (9.1), GOF  0.02; dash-and-dot-dot line is the calculation for model (9.2), GOF  0.09: 2 2 5 ib i0 0 11 2 2 12 2 2 0 0 / (1 0.489 0.769 )(1 7.61 10 / 1.435 10 / ) exp( 1.577 10 / ), R R BT B T M r M r M r           (9)           2 2 6 ib i0 0 12 2 2 13 2 2 0 0 / (1 0.489 0.769 )(1 4.581 10 / 7.635 10 / ) exp( 1.418 10 / ), R R BT B T M r M r M r (9.1) 2 2 6 ib i0 0 12 2 2 12 2 2 0 0 / (1 0.489 0.769 )(1 3.02 10 / 2.85 10 / ) exp( 7.88 10 / ). R R BT B T M r M r M r           (9.2) Solid lines in Fig. 6 are calculated according to theory [2]; the Fig. 4. DD of IIDD of elastically bent ideal crystal normalized to IIDD of un- bent ideal crystal: Rib(BT)/R0. 1044 S. M. BROVCHUK, V. B. MOLODKIN, A. I. NIZKOVA et al. dashed line was the calculation for model (10), GOF  0.17, the dotted line is the calculation for model (10), GOF  0.15; the dash-and-dot line is the calculation for model (10.1), GOF  0.04; dash-and-dot-dot line - is the calculation for model (10.2), GOF  0.16:           2 2 2 ib i0 0 11 2 2 12 2 2 0 0 / (1 0.848 0.686 )(1 1.7 10 / 1.82 10 / ) exp( 1.76 10 / ), R R BT B T M r M r M r (10) 2 2 6 ib i0 0 / (1 0.848 0.686 )(1 2.61 10 /R R BT B T M r      (10.1) Рис. 5. DD of IIDD of elastically bent ideal crystal normalized to IIDD of un- bent ideal crystal: Rib(BT)/R0. Fig. 6. DD of IIDD of elastically bent ideal crystal normalized to IIDD of un- bent ideal crystal: Rib(BT)/R0. MODELS OF DEFORMATION DEPENDENCES OF TOTAL INTEGRATED INTENSITY 1045 12 2 2 13 2 2 0 0 1.18 10 / ) exp( 1.91 10 / ),M r M r    2 2 6 ib i0 0 12 2 2 13 2 2 0 0 / (1 0.848 0.686 )(1 1.4 10 / 2.206 10 / ) exp( 1.94 10 / ). R R BT B T M r M r M r           (10.2) Figures 2—6 show that model parameters are different for various wavelengths and crystal thicknesses, i.e. to build the model that could be used as a method of defect diagnostics, diffraction conditions and BT interval must be constant. Deformation-dependence coefficients for interval of BT  0.75 are shown in Tables 1 and 2. 4. DETERMINING COEFFICIENTS OF THE DEFORMATION DEPENDENCES OF TIIDD MODEL FOR VARIOUS DEGREES OF STRUCTURE IMPERFECTION According to the Chukhovskii—Petrashen theory, the DD of IIDD shown in Fig. 7 have been calculated for Si single-crystal plate of thickness t  530 m for the interval 0.781  BT  0.744 for 220 Laue- reflection MoK- and FeK-radiation with   1.5. TABLE 1. Deformation dependence coefficients for BT  0.75 interval for ab- sorptive power. t, m CuK   10 5 CuK   10 12 CuK   10 12 CuK   10 5 CuK   10 12 CuK   10 12 FeK   10 5 FeK   10 11 FeK   10 12 1110 7.05 3.02 23.25 2.18 1.26 10.85 7.37 11.0 2.15 800 26.1 11.8 19.1 14.0 2.206 11.94 0.0017 1.82 1.76 565 57.8 10.8 20.31 35.61 4.151 10.92 8.62 3.8 2.038 390 45.81 7.635 14.18 30.2 2.85 7.88 7.61 14.35 1.577 195 42.1 9.99 10.4 33.06 4.57 5.33 15.4 9.035 1.385 TABLE 2. Deformation dependence coefficients for BT  0.75 interval for re- flective power. t, m   1110 1.16 0.74 800 0.848 0.686 565 0.079 1.025 390 0.489 0.769 195 0.2 0.78 1046 S. M. BROVCHUK, V. B. MOLODKIN, A. I. NIZKOVA et al. The solid line in Fig. 7, a is calculated according to theory [2]; the dashed line is calculated for model (11), GOF  0.000963; the solid line in Fig. 7, b is calculated according to theory [2]; the dashed line is cal- culated for model (11), GOF  0.0147 and 2 2 6 ib i0 0 12 2 2 13 2 2 0 0 / (1 0.68 0.8 )(1 2.65 10 / 4.71 10 / ) exp( 9.31 10 / ). R R BT B T M r M r M r           (11) Then, the factors of the model of DD of diffuse component of TIIDD have been determined for these diffraction conditions and the given interval of BT change by using a somewhat simplified model, with ac- count being taken of its necessary accuracy (11), through fitting of the calculated DD of TIIDD (solid lines in Fig. 8) to the experimental ones (marker on Fig. 8). The solid line DD of TIIDD in Fig. 8, a is calculated according to model (12); the dashed line DD of coherent component of TIIDD is cal- culated for model (12), the dotted line DD of diffuse component of TIIDD is calculated for model (12), GOF  0.208:                      7 2 2 6 ib 0 13 2 2 7 0 6 13 2 2 0 0 3.39 10 (1 0.61 0.64 )(1 2.81 10 / ) exp( 8.22 10 / ) 0.009 10 (1 0.49 ) (1 2.6 10 / ) exp( 6.2 10 / ). R BT B T M r M r BT M r M r (12) The solid line DD of TIIDD in Fig. 8, b was calculated according to model (13); the dashed line DD of coherent component of TIIDD was calculated for model (13), the dotted line DD of diffuse component of TIIDD was calculated for model (13), GOF  0.158:       8 2 2 6 ib 0 2.6 10 (1 0.61 0.64 )(1 2.81 10 / )R BT B T M r a b Fig. 7. DD of IIDD of elastically bent ideal crystal normalized to IIDD of un- bent ideal crystal: Rib(BT)/R0. MODELS OF DEFORMATION DEPENDENCES OF TOTAL INTEGRATED INTENSITY 1047             13 2 2 8 0 6 13 2 2 0 0 exp( 8.22 10 / ) 0.53 10 (1 0.49 ) (1 2.6 10 / ) exp( 6.2 10 / ). M r BT M r M r (13) The solid line DD of TIIDD in Fig. 8, c is calculated according to model (14); the dashed line DD of coherent component of TIIDD is cal- culated for model (14), the dotted line DD of diffuse component of TIIDD is calculated for model (14), GOF  0.149: 10 2 2 6 ib 0 13 2 2 10 0 6 2 2 13 0 0 2.44 10 (1 0.61 0.64 )(1 2.81 10 / ) exp( 8.22 10 / ) 3.91 10 (1 0.49 ) (1 2.6 10 / ) exp( / 6.2 10 ). R BT B T M r M r BT M r M r                       (14) 5. CONCLUSION A heuristic theoretical model of DD of TIIDD in single crystals with a b c Fig. 8. Deformation dependences (DD) of TIIDD of elastically bent crystal with defects: Rib(BT). 1048 S. M. BROVCHUK, V. B. MOLODKIN, A. I. NIZKOVA et al. defects has been developed. To determine the factors of the model, we use the Chukhovskii— Petrashen theory for IIDD for bent defect-free crystals and the results of the TIIDD theory in crystals with defects without bending as well as real samples with varying degrees of imperfections and with measured deformation TIIDD dependences. The paper shows that by fixing the conditions of diffraction, sam- ples that differ by defect structure only are described by the same mod- el and the same factors for DD. Thereby, it has been proved that the effects of both deformation and defects on the coherent and diffuse components are factorized sepa- rately in the model. At the same time, a marked difference of this effect on RiB and RiD components permits one to use DD of their total value (TIIDD) for de- termining the structure of samples with various types of defects. REFERENCES 1. V. B. Molodkin, A. I. Nizkova, A. P. Shpak et al., Difraktometriya Nanorazmernykh Defektov i Geterosloev Kristallov (Difractometry of Nanosize Defects and Heterolayers of Crystals) (Kiev: Akademperiodika: 2005) (in Russian). 2. F. N. Chukhovskii and P. V. Petrashen, Acta Cryst. A, 33: 311 (1977). 3. L. I. Datsenko and E. N. Kislovskii, phys. status solidi (a), 25: 551 (1974). << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Error /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /CMYK /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments true /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E> /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e> /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002> /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002> /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e> /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e> /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e> /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e> /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a> /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e> /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e> /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E> /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e> /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e> /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002> /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e> /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e> /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e> /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e> /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e> /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e> /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e> /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e> /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e> /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e> /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e> /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e> /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e> /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e> /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /ConvertToCMYK /DestinationProfileName () /DestinationProfileSelector /DocumentCMYK /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice