The radiation hardness of pulled silicon doped with germanium

The radiation hardness of Czochralski grown n-type silicon samples doped with germanium (NGe = 2×10²⁰ cm⁻³) and without it was investigated after irradiation by fast neutrons. The dependence of the effective carrier concentration on fluence was described in the framework of Gossick’s corrected model...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Dolgolenko, A.P., Gaidar, G.P., Varentsov, M.D., Litovchenko, P.G.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2007
Назва видання:Semiconductor Physics Quantum Electronics & Optoelectronics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/117657
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The radiation hardness of pulled silicon doped with germanium / A.P. Dolgolenko, G.P. Gaidar, M.D. Varentsov, P.G. Litovchenko // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2007. — Т. 10, № 1. — С. 4-12. — Бібліогр.: 32 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-117657
record_format dspace
spelling irk-123456789-1176572017-05-27T03:05:32Z The radiation hardness of pulled silicon doped with germanium Dolgolenko, A.P. Gaidar, G.P. Varentsov, M.D. Litovchenko, P.G. The radiation hardness of Czochralski grown n-type silicon samples doped with germanium (NGe = 2×10²⁰ cm⁻³) and without it was investigated after irradiation by fast neutrons. The dependence of the effective carrier concentration on fluence was described in the framework of Gossick’s corrected model. It was found that doping the germanium impurity resulted in increase of n-Si radiation hardness. The isothermal annealing of n-Si 〈Ge〉 after fluence 1.4×10¹⁴ n⁰⋅cm⁻² was studied. It was shown that the annealing of defect clusters is caused by the annihilation of vacancy type defects in clusters with interstitial defects. For di-interstitial (Е₁ = 0.74 eV; ν₁ = 3.5×10⁶s⁻¹), silicon interstitial atom (Е₂ = 0.91 eV; ν₂ = 7×10⁶ s⁻¹) and vacancy (ЕV = 0.8 eV; ν = 1×10⁷s⁻¹) the migration energies and frequency factors were determined. During the storage at room temperature, the behaviour of defect levels Ec−0.17 eV and Ec−0.078 eV was studied in the samples of Si (DOFZ) and Si 〈Ge〉, correspondingly. 2007 Article The radiation hardness of pulled silicon doped with germanium / A.P. Dolgolenko, G.P. Gaidar, M.D. Varentsov, P.G. Litovchenko // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2007. — Т. 10, № 1. — С. 4-12. — Бібліогр.: 32 назв. — англ. 1560-8034 PACS 61.72.Ji; 61.80.Hg; 61.82.Fk; 71.55.Cn; 61.72.Tt http://dspace.nbuv.gov.ua/handle/123456789/117657 en Semiconductor Physics Quantum Electronics & Optoelectronics Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The radiation hardness of Czochralski grown n-type silicon samples doped with germanium (NGe = 2×10²⁰ cm⁻³) and without it was investigated after irradiation by fast neutrons. The dependence of the effective carrier concentration on fluence was described in the framework of Gossick’s corrected model. It was found that doping the germanium impurity resulted in increase of n-Si radiation hardness. The isothermal annealing of n-Si 〈Ge〉 after fluence 1.4×10¹⁴ n⁰⋅cm⁻² was studied. It was shown that the annealing of defect clusters is caused by the annihilation of vacancy type defects in clusters with interstitial defects. For di-interstitial (Е₁ = 0.74 eV; ν₁ = 3.5×10⁶s⁻¹), silicon interstitial atom (Е₂ = 0.91 eV; ν₂ = 7×10⁶ s⁻¹) and vacancy (ЕV = 0.8 eV; ν = 1×10⁷s⁻¹) the migration energies and frequency factors were determined. During the storage at room temperature, the behaviour of defect levels Ec−0.17 eV and Ec−0.078 eV was studied in the samples of Si (DOFZ) and Si 〈Ge〉, correspondingly.
format Article
author Dolgolenko, A.P.
Gaidar, G.P.
Varentsov, M.D.
Litovchenko, P.G.
spellingShingle Dolgolenko, A.P.
Gaidar, G.P.
Varentsov, M.D.
Litovchenko, P.G.
The radiation hardness of pulled silicon doped with germanium
Semiconductor Physics Quantum Electronics & Optoelectronics
author_facet Dolgolenko, A.P.
Gaidar, G.P.
Varentsov, M.D.
Litovchenko, P.G.
author_sort Dolgolenko, A.P.
title The radiation hardness of pulled silicon doped with germanium
title_short The radiation hardness of pulled silicon doped with germanium
title_full The radiation hardness of pulled silicon doped with germanium
title_fullStr The radiation hardness of pulled silicon doped with germanium
title_full_unstemmed The radiation hardness of pulled silicon doped with germanium
title_sort radiation hardness of pulled silicon doped with germanium
publisher Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/117657
citation_txt The radiation hardness of pulled silicon doped with germanium / A.P. Dolgolenko, G.P. Gaidar, M.D. Varentsov, P.G. Litovchenko // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2007. — Т. 10, № 1. — С. 4-12. — Бібліогр.: 32 назв. — англ.
series Semiconductor Physics Quantum Electronics & Optoelectronics
work_keys_str_mv AT dolgolenkoap theradiationhardnessofpulledsilicondopedwithgermanium
AT gaidargp theradiationhardnessofpulledsilicondopedwithgermanium
AT varentsovmd theradiationhardnessofpulledsilicondopedwithgermanium
AT litovchenkopg theradiationhardnessofpulledsilicondopedwithgermanium
AT dolgolenkoap radiationhardnessofpulledsilicondopedwithgermanium
AT gaidargp radiationhardnessofpulledsilicondopedwithgermanium
AT varentsovmd radiationhardnessofpulledsilicondopedwithgermanium
AT litovchenkopg radiationhardnessofpulledsilicondopedwithgermanium
first_indexed 2023-10-18T20:30:19Z
last_indexed 2023-10-18T20:30:19Z
_version_ 1796150374870024192