Spectral Distances: Results for Moyal Plane and Noncommutative Torus

The spectral distance for noncommutative Moyal planes is considered in the framework of a non compact spectral triple recently proposed as a possible noncommutative analog of non compact Riemannian spin manifold. An explicit formula for the distance between any two elements of a particular class of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Cagnache, E., Wallet, J.C.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146321
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Spectral Distances: Results for Moyal Plane and Noncommutative Torus / E. Cagnache, J.C. Wallet // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The spectral distance for noncommutative Moyal planes is considered in the framework of a non compact spectral triple recently proposed as a possible noncommutative analog of non compact Riemannian spin manifold. An explicit formula for the distance between any two elements of a particular class of pure states can be determined. The corresponding result is discussed. The existence of some pure states at infinite distance signals that the topology of the spectral distance on the space of states is not the weak * topology. The case of the noncommutative torus is also considered and a formula for the spectral distance between some states is also obtained.