Zeros of Quasi-Orthogonal Jacobi Polynomials
We consider interlacing properties satisfied by the zeros of Jacobi polynomials in quasi-orthogonal sequences characterised by α>−1, −2<β<−1. We give necessary and sufficient conditions under which a conjecture by Askey, that the zeros of Jacobi polynomials P(α,β)n and P(α,β+2)n are interla...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2016
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147743 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Zeros of Quasi-Orthogonal Jacobi Polynomials / K. Driver, K. Jordaan // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147743 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1477432019-02-16T01:25:19Z Zeros of Quasi-Orthogonal Jacobi Polynomials Driver, K. Jordaan, K. We consider interlacing properties satisfied by the zeros of Jacobi polynomials in quasi-orthogonal sequences characterised by α>−1, −2<β<−1. We give necessary and sufficient conditions under which a conjecture by Askey, that the zeros of Jacobi polynomials P(α,β)n and P(α,β+2)n are interlacing, holds when the parameters α and β are in the range α>−1 and −2<β<−1. We prove that the zeros of P(α,β)n and P(α,β)n₊₁ do not interlace for any n∈N, n≥2 and any fixed α, β with α>−1, −2<β<−1. The interlacing of zeros of P(α,β)n and P(α,β+t)m for m,n∈N is discussed for α and β in this range, t≥1, and new upper and lower bounds are derived for the zero of P(α,β)n that is less than −1. 2016 Article Zeros of Quasi-Orthogonal Jacobi Polynomials / K. Driver, K. Jordaan // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33C50; 42C05 DOI:10.3842/SIGMA.2016.042 http://dspace.nbuv.gov.ua/handle/123456789/147743 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We consider interlacing properties satisfied by the zeros of Jacobi polynomials in quasi-orthogonal sequences characterised by α>−1, −2<β<−1. We give necessary and sufficient conditions under which a conjecture by Askey, that the zeros of Jacobi polynomials P(α,β)n and P(α,β+2)n are interlacing, holds when the parameters α and β are in the range α>−1 and −2<β<−1. We prove that the zeros of P(α,β)n and P(α,β)n₊₁ do not interlace for any n∈N, n≥2 and any fixed α, β with α>−1, −2<β<−1. The interlacing of zeros of P(α,β)n and P(α,β+t)m for m,n∈N is discussed for α and β in this range, t≥1, and new upper and lower bounds are derived for the zero of P(α,β)n that is less than −1. |
format |
Article |
author |
Driver, K. Jordaan, K. |
spellingShingle |
Driver, K. Jordaan, K. Zeros of Quasi-Orthogonal Jacobi Polynomials Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Driver, K. Jordaan, K. |
author_sort |
Driver, K. |
title |
Zeros of Quasi-Orthogonal Jacobi Polynomials |
title_short |
Zeros of Quasi-Orthogonal Jacobi Polynomials |
title_full |
Zeros of Quasi-Orthogonal Jacobi Polynomials |
title_fullStr |
Zeros of Quasi-Orthogonal Jacobi Polynomials |
title_full_unstemmed |
Zeros of Quasi-Orthogonal Jacobi Polynomials |
title_sort |
zeros of quasi-orthogonal jacobi polynomials |
publisher |
Інститут математики НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147743 |
citation_txt |
Zeros of Quasi-Orthogonal Jacobi Polynomials / K. Driver, K. Jordaan // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT driverk zerosofquasiorthogonaljacobipolynomials AT jordaank zerosofquasiorthogonaljacobipolynomials |
first_indexed |
2023-05-20T17:28:12Z |
last_indexed |
2023-05-20T17:28:12Z |
_version_ |
1796153364908605440 |