Zeros of Quasi-Orthogonal Jacobi Polynomials

We consider interlacing properties satisfied by the zeros of Jacobi polynomials in quasi-orthogonal sequences characterised by α>−1, −2<β<−1. We give necessary and sufficient conditions under which a conjecture by Askey, that the zeros of Jacobi polynomials P(α,β)n and P(α,β+2)n are interla...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Driver, K., Jordaan, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147743
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Zeros of Quasi-Orthogonal Jacobi Polynomials / K. Driver, K. Jordaan // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147743
record_format dspace
spelling irk-123456789-1477432019-02-16T01:25:19Z Zeros of Quasi-Orthogonal Jacobi Polynomials Driver, K. Jordaan, K. We consider interlacing properties satisfied by the zeros of Jacobi polynomials in quasi-orthogonal sequences characterised by α>−1, −2<β<−1. We give necessary and sufficient conditions under which a conjecture by Askey, that the zeros of Jacobi polynomials P(α,β)n and P(α,β+2)n are interlacing, holds when the parameters α and β are in the range α>−1 and −2<β<−1. We prove that the zeros of P(α,β)n and P(α,β)n₊₁ do not interlace for any n∈N, n≥2 and any fixed α, β with α>−1, −2<β<−1. The interlacing of zeros of P(α,β)n and P(α,β+t)m for m,n∈N is discussed for α and β in this range, t≥1, and new upper and lower bounds are derived for the zero of P(α,β)n that is less than −1. 2016 Article Zeros of Quasi-Orthogonal Jacobi Polynomials / K. Driver, K. Jordaan // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33C50; 42C05 DOI:10.3842/SIGMA.2016.042 http://dspace.nbuv.gov.ua/handle/123456789/147743 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider interlacing properties satisfied by the zeros of Jacobi polynomials in quasi-orthogonal sequences characterised by α>−1, −2<β<−1. We give necessary and sufficient conditions under which a conjecture by Askey, that the zeros of Jacobi polynomials P(α,β)n and P(α,β+2)n are interlacing, holds when the parameters α and β are in the range α>−1 and −2<β<−1. We prove that the zeros of P(α,β)n and P(α,β)n₊₁ do not interlace for any n∈N, n≥2 and any fixed α, β with α>−1, −2<β<−1. The interlacing of zeros of P(α,β)n and P(α,β+t)m for m,n∈N is discussed for α and β in this range, t≥1, and new upper and lower bounds are derived for the zero of P(α,β)n that is less than −1.
format Article
author Driver, K.
Jordaan, K.
spellingShingle Driver, K.
Jordaan, K.
Zeros of Quasi-Orthogonal Jacobi Polynomials
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Driver, K.
Jordaan, K.
author_sort Driver, K.
title Zeros of Quasi-Orthogonal Jacobi Polynomials
title_short Zeros of Quasi-Orthogonal Jacobi Polynomials
title_full Zeros of Quasi-Orthogonal Jacobi Polynomials
title_fullStr Zeros of Quasi-Orthogonal Jacobi Polynomials
title_full_unstemmed Zeros of Quasi-Orthogonal Jacobi Polynomials
title_sort zeros of quasi-orthogonal jacobi polynomials
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147743
citation_txt Zeros of Quasi-Orthogonal Jacobi Polynomials / K. Driver, K. Jordaan // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT driverk zerosofquasiorthogonaljacobipolynomials
AT jordaank zerosofquasiorthogonaljacobipolynomials
first_indexed 2023-05-20T17:28:12Z
last_indexed 2023-05-20T17:28:12Z
_version_ 1796153364908605440