A 'User-Friendly' Approach to the Dynamical Equations of Non-Holonomic Systems

Two effective methods for writing the dynamical equations for non-holonomic systems are illustrated. They are based on the two types of representation of the constraints: by parametric equations or by implicit equations. They can be applied to linear as well as to non-linear constraints. Only the ba...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Benenti, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147826
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A 'User-Friendly' Approach to the Dynamical Equations of Non-Holonomic Systems / S. Benenti // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147826
record_format dspace
spelling irk-123456789-1478262019-02-17T01:23:51Z A 'User-Friendly' Approach to the Dynamical Equations of Non-Holonomic Systems Benenti, S. Two effective methods for writing the dynamical equations for non-holonomic systems are illustrated. They are based on the two types of representation of the constraints: by parametric equations or by implicit equations. They can be applied to linear as well as to non-linear constraints. Only the basic notions of vector calculus on Euclidean 3-space and on tangent bundles are needed. Elementary examples are illustrated. 2007 Article A 'User-Friendly' Approach to the Dynamical Equations of Non-Holonomic Systems / S. Benenti // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 10 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37J60; 70F25 http://dspace.nbuv.gov.ua/handle/123456789/147826 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Two effective methods for writing the dynamical equations for non-holonomic systems are illustrated. They are based on the two types of representation of the constraints: by parametric equations or by implicit equations. They can be applied to linear as well as to non-linear constraints. Only the basic notions of vector calculus on Euclidean 3-space and on tangent bundles are needed. Elementary examples are illustrated.
format Article
author Benenti, S.
spellingShingle Benenti, S.
A 'User-Friendly' Approach to the Dynamical Equations of Non-Holonomic Systems
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Benenti, S.
author_sort Benenti, S.
title A 'User-Friendly' Approach to the Dynamical Equations of Non-Holonomic Systems
title_short A 'User-Friendly' Approach to the Dynamical Equations of Non-Holonomic Systems
title_full A 'User-Friendly' Approach to the Dynamical Equations of Non-Holonomic Systems
title_fullStr A 'User-Friendly' Approach to the Dynamical Equations of Non-Holonomic Systems
title_full_unstemmed A 'User-Friendly' Approach to the Dynamical Equations of Non-Holonomic Systems
title_sort 'user-friendly' approach to the dynamical equations of non-holonomic systems
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147826
citation_txt A 'User-Friendly' Approach to the Dynamical Equations of Non-Holonomic Systems / S. Benenti // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 10 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT benentis auserfriendlyapproachtothedynamicalequationsofnonholonomicsystems
AT benentis userfriendlyapproachtothedynamicalequationsofnonholonomicsystems
first_indexed 2023-05-20T17:28:36Z
last_indexed 2023-05-20T17:28:36Z
_version_ 1796153373402071040