On Addition Formulae for Sigma Functions of Telescopic Curves
A telescopic curve is a certain algebraic curve defined by m−1 equations in the affine space of dimension m, which can be a hyperelliptic curve and an (n,s) curve as a special case. We extend the addition formulae for sigma functions of (n,s) curves to those of telescopic curves. The expression of t...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2013
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149237 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On Addition Formulae for Sigma Functions of Telescopic Curves / T. Ayano, A. Nakayashiki // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 24 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149237 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1492372019-02-20T01:28:01Z On Addition Formulae for Sigma Functions of Telescopic Curves Ayano, T. Nakayashiki, A. A telescopic curve is a certain algebraic curve defined by m−1 equations in the affine space of dimension m, which can be a hyperelliptic curve and an (n,s) curve as a special case. We extend the addition formulae for sigma functions of (n,s) curves to those of telescopic curves. The expression of the prime form in terms of the derivative of the sigma function is also given. 2013 Article On Addition Formulae for Sigma Functions of Telescopic Curves / T. Ayano, A. Nakayashiki // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 24 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14H70; 37K20; 14H55; 14K25 DOI: http://dx.doi.org/10.3842/SIGMA.2013.046 http://dspace.nbuv.gov.ua/handle/123456789/149237 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A telescopic curve is a certain algebraic curve defined by m−1 equations in the affine space of dimension m, which can be a hyperelliptic curve and an (n,s) curve as a special case. We extend the addition formulae for sigma functions of (n,s) curves to those of telescopic curves. The expression of the prime form in terms of the derivative of the sigma function is also given. |
format |
Article |
author |
Ayano, T. Nakayashiki, A. |
spellingShingle |
Ayano, T. Nakayashiki, A. On Addition Formulae for Sigma Functions of Telescopic Curves Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Ayano, T. Nakayashiki, A. |
author_sort |
Ayano, T. |
title |
On Addition Formulae for Sigma Functions of Telescopic Curves |
title_short |
On Addition Formulae for Sigma Functions of Telescopic Curves |
title_full |
On Addition Formulae for Sigma Functions of Telescopic Curves |
title_fullStr |
On Addition Formulae for Sigma Functions of Telescopic Curves |
title_full_unstemmed |
On Addition Formulae for Sigma Functions of Telescopic Curves |
title_sort |
on addition formulae for sigma functions of telescopic curves |
publisher |
Інститут математики НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149237 |
citation_txt |
On Addition Formulae for Sigma Functions of Telescopic Curves / T. Ayano, A. Nakayashiki // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 24 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT ayanot onadditionformulaeforsigmafunctionsoftelescopiccurves AT nakayashikia onadditionformulaeforsigmafunctionsoftelescopiccurves |
first_indexed |
2023-05-20T17:32:32Z |
last_indexed |
2023-05-20T17:32:32Z |
_version_ |
1796153530244923392 |