Some moment results about the limit of a martingale related to the supercritical branching random walk and perpetuities

Let M(n),n=1,2,..., be the supercritical branching random walk in which the family sizes may be infinite with positive probability. Assume that a natural martingale related to M(n), converges almost surely and in the mean to a random variable W. For a large subclass of nonnegative and concave functi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Iksanov, О.М.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/164970
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Some moment results about the limit of a martingale related to the supercritical branching random walk and perpetuities / О.М. Iksanov // Український математичний журнал. — 2006. — Т. 58, № 4. — С. 451–471. — Бібліогр.: 23 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Let M(n),n=1,2,..., be the supercritical branching random walk in which the family sizes may be infinite with positive probability. Assume that a natural martingale related to M(n), converges almost surely and in the mean to a random variable W. For a large subclass of nonnegative and concave functions f , we provide a criterion for the finiteness of EWf(W). The main assertions of the present paper generalize some results obtained recently in Kuhlbusch’s Ph.D. thesis as well as previously known results for the Galton-Watson processes. In the process of the proof, we study the existence of the f-moments of perpetuities.