Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras
In this paper, we proved that a bijective mapping Φ : A → B satisfies Φ(a ◦ b + baΦ) = Φ(a) ◦ Φ(b) + Φ(b)Φ(a)* (where ◦ is the special Jordan product on A and B, respectively), for all elements a, b ∈ A, if and only if Φ is a ∗-ring isomorphism. In particular, if the von Neumann algebras A and B are...
Збережено в:
Дата: | 2021 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2021
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188677 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras / J.C.M. Ferreira, M.G.B. Marietto // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 1. — С. 61–70. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-188677 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1886772023-03-12T01:28:59Z Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras Ferreira, J.C.M. Marietto, M.G.B. In this paper, we proved that a bijective mapping Φ : A → B satisfies Φ(a ◦ b + baΦ) = Φ(a) ◦ Φ(b) + Φ(b)Φ(a)* (where ◦ is the special Jordan product on A and B, respectively), for all elements a, b ∈ A, if and only if Φ is a ∗-ring isomorphism. In particular, if the von Neumann algebras A and B are type I factors, then Φ is a unitary isomorphism or a conjugate unitary isomorphism. 2021 Article Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras / J.C.M. Ferreira, M.G.B. Marietto // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 1. — С. 61–70. — Бібліогр.: 7 назв. — англ. 1726-3255 DOI:10.12958/adm1482 2020 MSC: 47B48, 46L10 http://dspace.nbuv.gov.ua/handle/123456789/188677 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper, we proved that a bijective mapping Φ : A → B satisfies Φ(a ◦ b + baΦ) = Φ(a) ◦ Φ(b) + Φ(b)Φ(a)* (where ◦ is the special Jordan product on A and B, respectively), for all elements a, b ∈ A, if and only if Φ is a ∗-ring isomorphism. In particular, if the von Neumann algebras A and B are type I factors, then Φ is a unitary isomorphism or a conjugate unitary isomorphism. |
format |
Article |
author |
Ferreira, J.C.M. Marietto, M.G.B. |
spellingShingle |
Ferreira, J.C.M. Marietto, M.G.B. Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras Algebra and Discrete Mathematics |
author_facet |
Ferreira, J.C.M. Marietto, M.G.B. |
author_sort |
Ferreira, J.C.M. |
title |
Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras |
title_short |
Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras |
title_full |
Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras |
title_fullStr |
Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras |
title_full_unstemmed |
Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras |
title_sort |
mappings preserving sum of products a ◦ b + ba* on factor von neumann algebras |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2021 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/188677 |
citation_txt |
Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras / J.C.M. Ferreira, M.G.B. Marietto // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 1. — С. 61–70. — Бібліогр.: 7 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT ferreirajcm mappingspreservingsumofproductsabbaonfactorvonneumannalgebras AT mariettomgb mappingspreservingsumofproductsabbaonfactorvonneumannalgebras |
first_indexed |
2023-10-18T23:08:54Z |
last_indexed |
2023-10-18T23:08:54Z |
_version_ |
1796157371816345600 |