Oxygen activation effect on reactive magnetron synthesis of alumina coatings

The investigation results of the DC magnetron sputtering system for synthesis of high-quality oxide coatings are presented. In the system oxygen, activated by an independent Inductively-Coupled Plasma (ICP) source, is introduced into an aluminum sputtering chamber as an alternative to conventional r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2007
Hauptverfasser: Walkowicz, J., Zykov, A.V., Dudin, S.V., Yakovin, S.D.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/110582
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Oxygen activation effect on reactive magnetron synthesis of alumina coatings / J. Walkowicz, A.V. Zykov, S.V. Dudin, S.D. Yakovin // Вопросы атомной науки и техники. — 2007. — № 1. — С. 194-196. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-110582
record_format dspace
spelling Walkowicz, J.
Zykov, A.V.
Dudin, S.V.
Yakovin, S.D.
2017-01-04T20:08:59Z
2017-01-04T20:08:59Z
2007
Oxygen activation effect on reactive magnetron synthesis of alumina coatings / J. Walkowicz, A.V. Zykov, S.V. Dudin, S.D. Yakovin // Вопросы атомной науки и техники. — 2007. — № 1. — С. 194-196. — Бібліогр.: 5 назв. — англ.
1562-6016
PACS: 52.77.-j, 81.15.-z
https://nasplib.isofts.kiev.ua/handle/123456789/110582
The investigation results of the DC magnetron sputtering system for synthesis of high-quality oxide coatings are presented. In the system oxygen, activated by an independent Inductively-Coupled Plasma (ICP) source, is introduced into an aluminum sputtering chamber as an alternative to conventional reactive sputtering techniques employing the injection of ground state molecular O₂. Characteristics of deposition behavior are investigated with and without the activation of the reactive species.
Представлено результати досліджень магнетронної розпилювальної системи, що застосовується для синтезу високоякісних окисних покриттів. В робочу камеру кисень напускається вже попередньо активованим за допомогою високочастотного індукційного джерела, що є альтернативою звичайному реактивному магнетронному нанесенню, коли до робочої камери подається молекулярний кисень O₂. Досліджено характеристики процесу нанесення, як з попередньою активацією реактивного газу, так і без неї.
Представлены результаты исследований магнетронной распылительной системы, используемой для синтеза высококачественных оксидных покрытий. В рабочую камеру кислород напускается уже предварительно активированный при помощи источника на базе высокочастотного индукционного разряда, что является альтернативой обычному реактивному магнетронному нанесению, когда в рабочую камеру напускается молекулярный кислород O₂. Исследованы характеристики процесса нанесения, как с предварительной активацией реактивного газа, так и без.
The work was supported by COST 532 grant M 12 and Ministry of Education and Science of Ukraine (Project 0100U003301).
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Low temperature plasma and plasma technologies
Oxygen activation effect on reactive magnetron synthesis of alumina coatings
Вплив активації кисню на процес реактивного магнетронного синтезу покриттів з окису алюмінію
Влияние активации кислорода на процесс реактивного магнетронного синтеза покрытий оксида алюминия
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Oxygen activation effect on reactive magnetron synthesis of alumina coatings
spellingShingle Oxygen activation effect on reactive magnetron synthesis of alumina coatings
Walkowicz, J.
Zykov, A.V.
Dudin, S.V.
Yakovin, S.D.
Low temperature plasma and plasma technologies
title_short Oxygen activation effect on reactive magnetron synthesis of alumina coatings
title_full Oxygen activation effect on reactive magnetron synthesis of alumina coatings
title_fullStr Oxygen activation effect on reactive magnetron synthesis of alumina coatings
title_full_unstemmed Oxygen activation effect on reactive magnetron synthesis of alumina coatings
title_sort oxygen activation effect on reactive magnetron synthesis of alumina coatings
author Walkowicz, J.
Zykov, A.V.
Dudin, S.V.
Yakovin, S.D.
author_facet Walkowicz, J.
Zykov, A.V.
Dudin, S.V.
Yakovin, S.D.
topic Low temperature plasma and plasma technologies
topic_facet Low temperature plasma and plasma technologies
publishDate 2007
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Вплив активації кисню на процес реактивного магнетронного синтезу покриттів з окису алюмінію
Влияние активации кислорода на процесс реактивного магнетронного синтеза покрытий оксида алюминия
description The investigation results of the DC magnetron sputtering system for synthesis of high-quality oxide coatings are presented. In the system oxygen, activated by an independent Inductively-Coupled Plasma (ICP) source, is introduced into an aluminum sputtering chamber as an alternative to conventional reactive sputtering techniques employing the injection of ground state molecular O₂. Characteristics of deposition behavior are investigated with and without the activation of the reactive species. Представлено результати досліджень магнетронної розпилювальної системи, що застосовується для синтезу високоякісних окисних покриттів. В робочу камеру кисень напускається вже попередньо активованим за допомогою високочастотного індукційного джерела, що є альтернативою звичайному реактивному магнетронному нанесенню, коли до робочої камери подається молекулярний кисень O₂. Досліджено характеристики процесу нанесення, як з попередньою активацією реактивного газу, так і без неї. Представлены результаты исследований магнетронной распылительной системы, используемой для синтеза высококачественных оксидных покрытий. В рабочую камеру кислород напускается уже предварительно активированный при помощи источника на базе высокочастотного индукционного разряда, что является альтернативой обычному реактивному магнетронному нанесению, когда в рабочую камеру напускается молекулярный кислород O₂. Исследованы характеристики процесса нанесения, как с предварительной активацией реактивного газа, так и без.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/110582
citation_txt Oxygen activation effect on reactive magnetron synthesis of alumina coatings / J. Walkowicz, A.V. Zykov, S.V. Dudin, S.D. Yakovin // Вопросы атомной науки и техники. — 2007. — № 1. — С. 194-196. — Бібліогр.: 5 назв. — англ.
work_keys_str_mv AT walkowiczj oxygenactivationeffectonreactivemagnetronsynthesisofaluminacoatings
AT zykovav oxygenactivationeffectonreactivemagnetronsynthesisofaluminacoatings
AT dudinsv oxygenactivationeffectonreactivemagnetronsynthesisofaluminacoatings
AT yakovinsd oxygenactivationeffectonreactivemagnetronsynthesisofaluminacoatings
AT walkowiczj vplivaktivacííkisnûnaprocesreaktivnogomagnetronnogosintezupokrittívzokisualûmíníû
AT zykovav vplivaktivacííkisnûnaprocesreaktivnogomagnetronnogosintezupokrittívzokisualûmíníû
AT dudinsv vplivaktivacííkisnûnaprocesreaktivnogomagnetronnogosintezupokrittívzokisualûmíníû
AT yakovinsd vplivaktivacííkisnûnaprocesreaktivnogomagnetronnogosintezupokrittívzokisualûmíníû
AT walkowiczj vliânieaktivaciikislorodanaprocessreaktivnogomagnetronnogosintezapokrytiioksidaalûminiâ
AT zykovav vliânieaktivaciikislorodanaprocessreaktivnogomagnetronnogosintezapokrytiioksidaalûminiâ
AT dudinsv vliânieaktivaciikislorodanaprocessreaktivnogomagnetronnogosintezapokrytiioksidaalûminiâ
AT yakovinsd vliânieaktivaciikislorodanaprocessreaktivnogomagnetronnogosintezapokrytiioksidaalûminiâ
first_indexed 2025-11-26T00:08:22Z
last_indexed 2025-11-26T00:08:22Z
_version_ 1850592063574245376
fulltext 194 Problems of Atomic Science and Technology. 2007, 1. Series: Plasma Physics (13), p. 194-196 OXYGEN ACTIVATION EFFECT ON REACTIVE MAGNETRON SYNTHESIS OF ALUMINA COATINGS J. Walkowicz 1, A.V. Zykov2, S.V. Dudin 2, S.D. Yakovin 2 1Institute for Sustainable Technologies, Pulaskiego Str. 6/10, 26-600, Radom, Poland; 2V.N. Karazin Kharkov National University, Department of Physical Technologies, Kurchatov av. 31, 61108 Kharkov, Ukraine The investigation results of the DC magnetron sputtering system for synthesis of high-quality oxide coatings are presented. In the system oxygen, activated by an independent Inductively-Coupled Plasma (ICP) source, is introduced into an aluminum sputtering chamber as an alternative to conventional reactive sputtering techniques employing the injection of ground state molecular O2. Characteristics of deposition behavior are investigated with and without the activation of the reactive species. PACS: 52.77.-j, 81.15.-z 1. INTRODUCTION Aluminum oxide thin films are widely used in many mechanical, optical and microelectronic applications be- cause of their excellent properties, in terms of chemical inertness, mechanical strength and hardness, transparency, high abrasive and corrosion resistance, as well as insulat- ing and optical properties. At present thin alumina coat- ings (less then or about 1 micron) are used in production of solar sells, elements for integral optics, diffusion bar- rier applications and in microelectronics [1]. However, despite the obvious virtues of alumina coat- ings, process of introduction of such coatings to the in- dustry is in an initial stage, and scope of their use is far from the same of TiN coatings. Direct current planar magnetrons are widely used for deposition of metal coat- ings [2]. At the same time ion-plasma synthesis of dielec- tric coatings, in particular the oxides such as TiO2, Al2O3, Ta2O5 etc. by DC magnetrons has got some serious diffi- culties for the simple reason that the films being proc- essed do not conduct current. This leads to the target pas- sivation, intensive arcing, and the instability of discharge (phenomenon of “disappearing anode”), that essentially constricts the “window” of technological parameters and reduces the coatings quality. One of traditional solutions of these problems is the use of high-frequency or pulsed power source. However in this case the deposition rate falls and the equipment cost is essentially increased. Reactive sputtering from a metallic target is the pre- ferred choice for high rate deposition, but here the control- lability issues of target and anode oxidation must be ad- dressed. Because of these issues, the search continues for a solution providing high throughput, reproducible reactive sputtering results for materials like aluminum oxide. In this paper the results of development of the DC magnetron sputtering system for synthesis of high-quality oxide coatings are presented. The basic idea of the system consists in separation of 2 processes: metal target sputter- ing by DC magnetron discharge in inert gas and activation and transport of reactive gas by additional plasma source based on RF inductive discharge [3]. 2. EXPERIMENTAL SETUP Film depositions were performed in a Balzers BA-510A high vacuum pumping system with the base pressure about 10-5 mbar. A schematic layout of the magnetron and ICP source in the sputtering chamber is shown in Fig. 1. A pure aluminum target of 170 mm diameter mounted on magnetron 1 served as a sputtered aluminum source. Power to the sputter cathode was applied using 10 kW dc power supply 2, produced by ITeE, operated in current or voltage regulation mode. Current regulation was chosen in these experiments simply as a monitor of process stability. By allowing the cathode voltage to drift, the level of poisoning could easily be monitored by tracking the target voltage [4,5]. Argon used as the sputtering gas in all deposition ex- periments was fed to the chamber independently of the reactive oxygen – through the dedicated manifold – di- rectly on the magnetron target. Flows for both argon and oxygen were regulated using BETA ERG mass flow con- trollers operated by two-channel process control unit. Pressure monitoring in the sputter chamber was accom- plished using Balzers PKR-250 Pirani/Cold Cathode gauge 8. 2 1 2 3 4 5 6 7 8 Ar to vacuum pump 10 cm Fig.1. A schematic diagram of the alumina deposition system: 1 - magnetron, 2 - DC power supply, 3 - ICP source, 4 - RF matchbox, 5 - RF power supply, 6 - substrate holder, 7 - substrate shield, 8 - vacuum gauge 195 Oxygen for the reactive sputtering was delivered through the ICP source 3 for all deposition processes. A ceramic tube 100 mm in diameter and 120 mm in length was used as ICP source chamber. The source was located 10 cm closer to samples than the magnetron such that the ICP source did not block the path of sputtered aluminum (see Fig. 1). The substrates were mounted at shielded sub- strate holder 6 that allows to deposit up to 12 samples per pumping cycle. 3. TECHNOLOGY OF ALUMINA SYNTHESIS USING THE ICP ENHANCED REACTIVE MAGNETRON SPUTTERING SYSTEM The key novelty of the present system comparing to known designs is the operation pressure range (0.7-3.5)·10-3 mbar where motion of particles may be treated as free fall. It allows increasing the distance mag- netron – substrate holder up to 30 - 40 cm, significant increase in the deposition area with acceptable deposition rate. In Fig. 2 magnetron voltage-current characteristics are presented at various oxygen flows. Measurements were done in the following sequence. At high discharge current (8 ) oxygen feeding was carried out up to the necessary flow rate, and then the magnetron current was reduced down to the passivated mode transition. The dependence of minimum DC power of the magnetron operation in metallic mode has been in such a way measured versus oxygen flow rate (Fig. 3). Apparently from the figure it is practically linear with the slope of about 10-12 sccm/kW. To achieve a stable environment for aluminum oxide deposition and to provide control margin to the reactive deposition process, the effective oxygen partial pressure at the substrate was modified using the preactivation of the reactive gas using the independent RF ICP source. The idea of this technique is to deliver gas of improved reactivity to the substrate, further-increasing the effective oxygen partial pressure in the deposition zone and thereby increasing the operating margin by maintaining the target in a more stable range on the hysteresis curve. This idea was successfully verified in our experiments. The standard sequence of the deposition process stages used in the present experiments is described below, the choice of technological regime for stoichiometric alumina deposition was done with the help of diagrams given in Figs. 2, 3. Question of principle at deposition of stoichiometric Al2O3 films when using the directed source of activated oxygen is the relative positioning of the magnetron, the plasma source and the substrate. It has been established, that alongside with main technological process parameters (magnetron and RF discharge power, oxygen flow rate, argon pressure), the geometrical parameters (distances and angles of the magnetron and the plasma source in relation to the substrate holder) determine 3-dimensional Al2O3 stoichiometrical region in the chamber space. In the Fig. 4 a typical 2D stoichiometrical diagram of the films synthesized in the present system is shown in the plane passing trough the axis of the magnetron and ICP source. 3.1. TECHNOLOGICAL BASELINE 1. The substrates (glass, clear an TiN coated high-speed steel SW7M) cleaned in ultrasonic bath with standard technology, were mounted on a shielded substrate holder allowing multiple sample deposition per pumping cycle. Processing started after pumping to the base pressure 10-5 mbar or less. 0 100 200 300 400 500 600 0 2 4 6 8 Oxygen flow rate, sccm 2 1 30209.5 U , V I, A Fig. 2. Current-voltage characteristics of the magne- tron:1 – Ar at 0.8 mTorr, 2 – O2 at 0.8 mTorr 3 10 cm 1 2 Fig.4. 1 - magnetron, 2 - ICP source, 3 - substrate holder with film transparency distribution shown. Stoichiometrical region is hatched 0 5 10 15 20 25 30 35 40 0 1 2 3 4 5 6 target arcing threshold target poisoning threshold P, k W Q, sccm Fig. 3. Dependence of minimum magnetron DC power P for metallic mode operation on oxygen flow rate Q 196 2. The substrates were cleaned and activated in Ar ICP discharge at pressure (1 - 3)·10-3 mbar and RF power 500 W during 5-15 min. DC bias (0, -100, -500, -1000 V) was applied to the substrates, and substrate current was measured. 3. After the cleaning stage the substrate bias was switched off, the ICP discharge remained on, shield was closed, and the magnetron was ignited at constant argon pressure. After the oxidized magnetron target surface re- covery to metallic mode and stabilization of the magne- tron discharge parameters within 3-5 minutes, oxygen was filled through ICP source. Oxygen flow rate was set ac- cording to the diagram in Fig. 3. After that fine tuning of the ICP source matchbox was performed if needed. 4. The shield was opened, and deposition time counting was started. During the deposition process the RF matchbox was tuned if reflected power exceed 10% of the forward power. The magnetron power supply operated in the current regulation mode, so no adjustment was neces- sary. 5. After the deposition time termination the shield was closed, oxygen flow was shut down, the magnetron power supply and the RF generator were switched off, after that delivery of argon was stopped and the chamber was opened. Process of aluminum film deposition was performed in the same sequence, but without oxygen feeding. 4. CONCLUSIONS To produce a fully oxidized aluminum oxide film and reliably avoid target poisoning in a dc magnetron reactive sputtering process one of two approaches must be taken: 1) to employ sophisticated feedback and control loops in the gas delivery system to maintain the oxygen partial pressure at a precisely specified level or 2) to use directed source of activated oxygen such that the oxygen partial pressure at the target is measurably less than that required to cause poisoning but the partial pressure and reactivity at the substrate is adequate to produce the films of the desired properties. The technique, explored in this study, was shown effective in producing high quality aluminum oxide films in a dc reactive sputtering environment with- out the issue of target poisoning. Using these enhance- ments, films deposited in the flat portion of the target voltage hysteresis curve displayed properties comparable, and in some cases, superior to those deposited near the knee of the curve without the aid of the mentioned en- hancements. The complex application of these solutions in the sput- tering system has allowed to expand the range of stable system operation: working pressure – (2-10)·10-4Torr, magnetron discharge power – (1–8) kW, power of chemi- cally active particles source – up to 1 kW, coating deposi- tion rate (for example Al2O3) – up to 8 microns/hour, and to improve essentially the coatings quality. The work was supported by COST 532 grant M 12 and Ministry of Education and Science of Ukraine (Pro- ject 0100U003301). REFERENCES 1. E. Dorre, H. Hubner (Eds.) Alumina: Processing Prop- erties and Applications. Berlin: “Springer”, 1984. 2. B.S. Danilin. The use of low-temperature plasma for thin film deposition. M.: ”Energoatomizdat”, 1989. 3. I. Denysenko, S. Dudin, A. Zykov, N. Azarenkov. Ion flux uniformity in inductively coupled plasma sources// Phys. Plasmas. 2002, v. 9, N 11, p.4767. 4. A.V. Zykov, S.V. Dudin, S.D. Yakovin, J. Walkowicz. Magnetron sputtering system for synthesis dielectric coat- ings // 10th Int. Conf. on Plasma Physics and Controlled Fusion, Alushta, Ukraine, September 13-18, 2004/ Book of Abstracts, 2004, p.170. 5. M.I. Borodin, S.V. Dudin, V.I. Farenik. Time resolved investigation of non-stationary magnetron discharge// 10th Intl. Conf. on Plasma Physics and Controlled Fusion, Alushta, Ukraine, September 13-18, 2004/ Book of Ab- stracts, 2004, p.181. . , . , . , . , . , , O2. , , . . , . , . , . , . - , , O2. , , .