Optimal solution in producing 32-nm CMOS technology transistor with desired leakage current

The objective of this paper is to optimize the process parameters of 32-nm CMOS process to get minimum leakage current. Four process parameters were chosen, namely: (i) source-drain implantation, (ii) source-drain compensation implantation, (iii) halo implantation time, and (iv) silicide annealin...

Full description

Saved in:
Bibliographic Details
Published in:Semiconductor Physics Quantum Electronics & Optoelectronics
Date:2011
Main Authors: Elgomati, H.A., Ahmad, I., Salehuddin, F., Hamid, F.A., Zaharim, A., Majlis, B.Y., Apte, P.R.
Format: Article
Language:English
Published: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2011
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/117716
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Optimal solution in producing 32-nm CMOS technology transisto with desired leakage current / H.A.Elgomati, I.Ahmad, F.Salehuddin, F.A.Hamid, A.Zaharim, B.Y.Majlis, P.R.Apte // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2011. — Т. 14, № 2. — С. 145-151 — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-117716
record_format dspace
spelling Elgomati, H.A.
Ahmad, I.
Salehuddin, F.
Hamid, F.A.
Zaharim, A.
Majlis, B.Y.
Apte, P.R.
2017-05-26T13:01:12Z
2017-05-26T13:01:12Z
2011
Optimal solution in producing 32-nm CMOS technology transisto with desired leakage current / H.A.Elgomati, I.Ahmad, F.Salehuddin, F.A.Hamid, A.Zaharim, B.Y.Majlis, P.R.Apte // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2011. — Т. 14, № 2. — С. 145-151 — Бібліогр.: 16 назв. — англ.
1560-8034
PACS 73.40.Qv, 85.30.Tv
https://nasplib.isofts.kiev.ua/handle/123456789/117716
The objective of this paper is to optimize the process parameters of 32-nm CMOS process to get minimum leakage current. Four process parameters were chosen, namely: (i) source-drain implantation, (ii) source-drain compensation implantation, (iii) halo implantation time, and (iv) silicide annealing time. The Taguchi method technique was used to design the experiment. Two noise factors were used that consist of four measurements for each row of experiment in the L9 array, thus leading to a set of experiments consisting of 36 runs. The simulator of ATHENA and ATLAS were used for MOSFET fabrication process and electrical characterization, respectively. The results clearly show that the compensation implantation (46%) has the most dominant impact on the resulting leakage current in NMOS device, whereas source-drain (S/D) implantation was the second ranking factor (35%). The percent effects on signal-to-noise ratio (SNR) of silicide annealing temperature and halo implantation are much lower being 12% and 7%, respectively. For the PMOS device, halo implantation was defined as an adjustment factor because of its minimal effect on SNR and highest on the means (43%). Halo implantation doping as the optimum solution for fabricating the 32-nm NMOS transistor is 2.38×10¹³atom/cm³. As conclusion, this experiment proves that the Taguchi analysis can be effectively used in finding the optimum solution in producing 32-nm CMOS transistor with acceptable leakage current, well within International Technology Roadmap for Semiconductor (ITRS) prediction.
en
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
Semiconductor Physics Quantum Electronics & Optoelectronics
Optimal solution in producing 32-nm CMOS technology transistor with desired leakage current
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Optimal solution in producing 32-nm CMOS technology transistor with desired leakage current
spellingShingle Optimal solution in producing 32-nm CMOS technology transistor with desired leakage current
Elgomati, H.A.
Ahmad, I.
Salehuddin, F.
Hamid, F.A.
Zaharim, A.
Majlis, B.Y.
Apte, P.R.
title_short Optimal solution in producing 32-nm CMOS technology transistor with desired leakage current
title_full Optimal solution in producing 32-nm CMOS technology transistor with desired leakage current
title_fullStr Optimal solution in producing 32-nm CMOS technology transistor with desired leakage current
title_full_unstemmed Optimal solution in producing 32-nm CMOS technology transistor with desired leakage current
title_sort optimal solution in producing 32-nm cmos technology transistor with desired leakage current
author Elgomati, H.A.
Ahmad, I.
Salehuddin, F.
Hamid, F.A.
Zaharim, A.
Majlis, B.Y.
Apte, P.R.
author_facet Elgomati, H.A.
Ahmad, I.
Salehuddin, F.
Hamid, F.A.
Zaharim, A.
Majlis, B.Y.
Apte, P.R.
publishDate 2011
language English
container_title Semiconductor Physics Quantum Electronics & Optoelectronics
publisher Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
format Article
description The objective of this paper is to optimize the process parameters of 32-nm CMOS process to get minimum leakage current. Four process parameters were chosen, namely: (i) source-drain implantation, (ii) source-drain compensation implantation, (iii) halo implantation time, and (iv) silicide annealing time. The Taguchi method technique was used to design the experiment. Two noise factors were used that consist of four measurements for each row of experiment in the L9 array, thus leading to a set of experiments consisting of 36 runs. The simulator of ATHENA and ATLAS were used for MOSFET fabrication process and electrical characterization, respectively. The results clearly show that the compensation implantation (46%) has the most dominant impact on the resulting leakage current in NMOS device, whereas source-drain (S/D) implantation was the second ranking factor (35%). The percent effects on signal-to-noise ratio (SNR) of silicide annealing temperature and halo implantation are much lower being 12% and 7%, respectively. For the PMOS device, halo implantation was defined as an adjustment factor because of its minimal effect on SNR and highest on the means (43%). Halo implantation doping as the optimum solution for fabricating the 32-nm NMOS transistor is 2.38×10¹³atom/cm³. As conclusion, this experiment proves that the Taguchi analysis can be effectively used in finding the optimum solution in producing 32-nm CMOS transistor with acceptable leakage current, well within International Technology Roadmap for Semiconductor (ITRS) prediction.
issn 1560-8034
url https://nasplib.isofts.kiev.ua/handle/123456789/117716
citation_txt Optimal solution in producing 32-nm CMOS technology transisto with desired leakage current / H.A.Elgomati, I.Ahmad, F.Salehuddin, F.A.Hamid, A.Zaharim, B.Y.Majlis, P.R.Apte // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2011. — Т. 14, № 2. — С. 145-151 — Бібліогр.: 16 назв. — англ.
work_keys_str_mv AT elgomatiha optimalsolutioninproducing32nmcmostechnologytransistorwithdesiredleakagecurrent
AT ahmadi optimalsolutioninproducing32nmcmostechnologytransistorwithdesiredleakagecurrent
AT salehuddinf optimalsolutioninproducing32nmcmostechnologytransistorwithdesiredleakagecurrent
AT hamidfa optimalsolutioninproducing32nmcmostechnologytransistorwithdesiredleakagecurrent
AT zaharima optimalsolutioninproducing32nmcmostechnologytransistorwithdesiredleakagecurrent
AT majlisby optimalsolutioninproducing32nmcmostechnologytransistorwithdesiredleakagecurrent
AT aptepr optimalsolutioninproducing32nmcmostechnologytransistorwithdesiredleakagecurrent
first_indexed 2025-12-07T20:23:22Z
last_indexed 2025-12-07T20:23:22Z
_version_ 1850882394293272576