Last results of novel plasmaoptical devices investigation
The combined system composed of the vacuum arc evaporator and plasmaoptical system with plasma lens (PL) geometry are presented and studied. The plasmadynamical characteristics of high density low energy plasma flow propagating through the PL are investigated. The application of the plasma lens to...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2018 |
| Hauptverfasser: | , , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/147334 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Last results of novel plasmaoptical devices investigation / A.A. Goncharov, A.M. Dobrovolsky, V.Yu. Bazhenov, I.V. Litovko, I.V. Naiko, L.V. Naiko, E.G. Kostin, I.M. Protsenko // Вопросы атомной науки и техники. — 2018. — № 4. — С. 36-39. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147334 |
|---|---|
| record_format |
dspace |
| spelling |
Goncharov, A.A. Dobrovolsky, A.M. Bazhenov, V.Yu. Litovko, I.V. Naiko, I.V. Naiko, L.V. Kostin, E.G. Protsenko, I.M. 2019-02-14T14:10:10Z 2019-02-14T14:10:10Z 2018 Last results of novel plasmaoptical devices investigation / A.A. Goncharov, A.M. Dobrovolsky, V.Yu. Bazhenov, I.V. Litovko, I.V. Naiko, L.V. Naiko, E.G. Kostin, I.M. Protsenko // Вопросы атомной науки и техники. — 2018. — № 4. — С. 36-39. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 52.80.Mg 52.40.Mj 52.40.Hf 52.65.-y https://nasplib.isofts.kiev.ua/handle/123456789/147334 The combined system composed of the vacuum arc evaporator and plasmaoptical system with plasma lens (PL) geometry are presented and studied. The plasmadynamical characteristics of high density low energy plasma flow propagating through the PL are investigated. The application of the plasma lens to the transport of low energy highcurrent ion beam can improve the delivery of plasma flow to substrate, as well as provide microdroplet removal by means of the fast electrons within the lens region. Запропонована та досліджується комбінована система, що складається з вакуумно-дугового джерела плазми та плазмооптичного пристрою в геометрії плазмової лінзи (ПЛ). Досліджено плазмодинамічні характеристики низькоенергетичного плазмового потоку високої щільності, що проходить крізь ПЛ. Застосування ПЛ задля транспортування низькоенергетичних іонних потоків з великим струмом дозволяє покращити проходження плазми до мішені та зменшити вміст мікрокрапель завдяки присутнім в об’ємі лінзи швидким електронам. Предложена и исследуется комбинированная система из вакуумно-дугового испарителя и плазмооптического устройства в геометрии плазменной линзы (ПЛ). Исследованы плазмодинамические характеристики низкоэнергетического плазменного потока высокой плотности, проходящего через ПЛ. Использование ПЛ для транспортировки низкоэнергетических ионных потоков с большим током позволяет улучшить прохождение плазмы к мишени и уменьшить содержание микрокапель благодаря наличию быстрых электронов в объеме линзы. This work was supported in part by projects PL-18- 32 and P13/18-32, V191. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Нерелятивистская электроника Last results of novel plasmaoptical devices investigation Останні результати досліджень сучасних плазмооптичних пристроїв Последние результаты исследований современных плазмооптических устройств Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Last results of novel plasmaoptical devices investigation |
| spellingShingle |
Last results of novel plasmaoptical devices investigation Goncharov, A.A. Dobrovolsky, A.M. Bazhenov, V.Yu. Litovko, I.V. Naiko, I.V. Naiko, L.V. Kostin, E.G. Protsenko, I.M. Нерелятивистская электроника |
| title_short |
Last results of novel plasmaoptical devices investigation |
| title_full |
Last results of novel plasmaoptical devices investigation |
| title_fullStr |
Last results of novel plasmaoptical devices investigation |
| title_full_unstemmed |
Last results of novel plasmaoptical devices investigation |
| title_sort |
last results of novel plasmaoptical devices investigation |
| author |
Goncharov, A.A. Dobrovolsky, A.M. Bazhenov, V.Yu. Litovko, I.V. Naiko, I.V. Naiko, L.V. Kostin, E.G. Protsenko, I.M. |
| author_facet |
Goncharov, A.A. Dobrovolsky, A.M. Bazhenov, V.Yu. Litovko, I.V. Naiko, I.V. Naiko, L.V. Kostin, E.G. Protsenko, I.M. |
| topic |
Нерелятивистская электроника |
| topic_facet |
Нерелятивистская электроника |
| publishDate |
2018 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Останні результати досліджень сучасних плазмооптичних пристроїв Последние результаты исследований современных плазмооптических устройств |
| description |
The combined system composed of the vacuum arc evaporator and plasmaoptical system with plasma lens (PL)
geometry are presented and studied. The plasmadynamical characteristics of high density low energy plasma flow
propagating through the PL are investigated. The application of the plasma lens to the transport of low energy highcurrent ion beam can improve the delivery of plasma flow to substrate, as well as provide microdroplet removal by
means of the fast electrons within the lens region.
Запропонована та досліджується комбінована система, що складається з вакуумно-дугового джерела плазми та плазмооптичного пристрою в геометрії плазмової лінзи (ПЛ). Досліджено плазмодинамічні характеристики низькоенергетичного плазмового потоку високої щільності, що проходить крізь ПЛ. Застосування
ПЛ задля транспортування низькоенергетичних іонних потоків з великим струмом дозволяє покращити проходження плазми до мішені та зменшити вміст мікрокрапель завдяки присутнім в об’ємі лінзи швидким електронам.
Предложена и исследуется комбинированная система из вакуумно-дугового испарителя и плазмооптического устройства в геометрии плазменной линзы (ПЛ). Исследованы плазмодинамические характеристики
низкоэнергетического плазменного потока высокой плотности, проходящего через ПЛ. Использование ПЛ
для транспортировки низкоэнергетических ионных потоков с большим током позволяет улучшить прохождение плазмы к мишени и уменьшить содержание микрокапель благодаря наличию быстрых электронов в
объеме линзы.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147334 |
| citation_txt |
Last results of novel plasmaoptical devices investigation / A.A. Goncharov, A.M. Dobrovolsky, V.Yu. Bazhenov, I.V. Litovko, I.V. Naiko, L.V. Naiko, E.G. Kostin, I.M. Protsenko // Вопросы атомной науки и техники. — 2018. — № 4. — С. 36-39. — Бібліогр.: 6 назв. — англ. |
| work_keys_str_mv |
AT goncharovaa lastresultsofnovelplasmaopticaldevicesinvestigation AT dobrovolskyam lastresultsofnovelplasmaopticaldevicesinvestigation AT bazhenovvyu lastresultsofnovelplasmaopticaldevicesinvestigation AT litovkoiv lastresultsofnovelplasmaopticaldevicesinvestigation AT naikoiv lastresultsofnovelplasmaopticaldevicesinvestigation AT naikolv lastresultsofnovelplasmaopticaldevicesinvestigation AT kostineg lastresultsofnovelplasmaopticaldevicesinvestigation AT protsenkoim lastresultsofnovelplasmaopticaldevicesinvestigation AT goncharovaa ostannírezulʹtatidoslídženʹsučasnihplazmooptičnihpristroív AT dobrovolskyam ostannírezulʹtatidoslídženʹsučasnihplazmooptičnihpristroív AT bazhenovvyu ostannírezulʹtatidoslídženʹsučasnihplazmooptičnihpristroív AT litovkoiv ostannírezulʹtatidoslídženʹsučasnihplazmooptičnihpristroív AT naikoiv ostannírezulʹtatidoslídženʹsučasnihplazmooptičnihpristroív AT naikolv ostannírezulʹtatidoslídženʹsučasnihplazmooptičnihpristroív AT kostineg ostannírezulʹtatidoslídženʹsučasnihplazmooptičnihpristroív AT protsenkoim ostannírezulʹtatidoslídženʹsučasnihplazmooptičnihpristroív AT goncharovaa poslednierezulʹtatyissledovaniisovremennyhplazmooptičeskihustroistv AT dobrovolskyam poslednierezulʹtatyissledovaniisovremennyhplazmooptičeskihustroistv AT bazhenovvyu poslednierezulʹtatyissledovaniisovremennyhplazmooptičeskihustroistv AT litovkoiv poslednierezulʹtatyissledovaniisovremennyhplazmooptičeskihustroistv AT naikoiv poslednierezulʹtatyissledovaniisovremennyhplazmooptičeskihustroistv AT naikolv poslednierezulʹtatyissledovaniisovremennyhplazmooptičeskihustroistv AT kostineg poslednierezulʹtatyissledovaniisovremennyhplazmooptičeskihustroistv AT protsenkoim poslednierezulʹtatyissledovaniisovremennyhplazmooptičeskihustroistv |
| first_indexed |
2025-11-25T21:08:27Z |
| last_indexed |
2025-11-25T21:08:27Z |
| _version_ |
1850551218841059328 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2018. №4(116) 36
LAST RESULTS OF NOVEL PLASMAOPTICAL DEVICES
INVESTIGATION
A.A. Goncharov1, A.M. Dobrovolsky1, V.Yu. Bazhenov1, I.V. Litovko2, I.V. Naiko1, L.V. Naiko1,
E.G. Kostin2, I.M. Protsenko1
1Institute of Physics NAS of Ukraine, Kiev, Ukraine;
2Institute for Nuclear Research NAS of Ukraine, Kiev, Ukraine
E-mail: dobr@iop.kiev.ua
The combined system composed of the vacuum arc evaporator and plasmaoptical system with plasma lens (PL)
geometry are presented and studied. The plasmadynamical characteristics of high density low energy plasma flow
propagating through the PL are investigated. The application of the plasma lens to the transport of low energy high-
current ion beam can improve the delivery of plasma flow to substrate, as well as provide microdroplet removal by
means of the fast electrons within the lens region.
PACS: 52.80.Mg 52.40.Mj 52.40.Hf 52.65.-y
INTRODUCTION
The vacuum arc plasma sources, like MEVVA, for
production high-current (ampere scale), moderate ener-
gy (1…100 keV) heavy metal ion beams with different
species [1] are known and well explored. The axi-
symmetric cylindrical electrostatic PL, based on the
fundamental plasma optical principles, is well-explored
tool for focusing and manipulating kind ion beams,
where the concern of beam space charged compensation
is critical [2]. The combination of these tools in one
device looks a very attractive. The attachment of PL in a
volume of MEVVA source creates new possibility for
manipulating a low energy ion plasma flow propagating
towards to substrate (deposition option) or to emission
grid (plasma source option).
In [3 - 6] it has been noted that changing potential
relief in the PL volume allows to control the properties
of high density low energy plasma in wide range. In
part, a new approach was proposed to the elimination of
microdroplets from the dense metal plasma flow based
on the use of an electrostatic PL to generate an energetic
electron beam formed self-consistently by ion-electron
secondary emission in the near-wall plasma layer from
the internal surface of the lens central electrode. It can
provide evaporation and thus elimination of micro-
droplets from the plasma flow. Some preliminary theo-
retical and experimental studies were carried out provid-
ing confidence and optimism that proposed idea for mi-
cro-droplet elimination has good potential for success.
1. EXPERIMENTAL CONDITIONS
The experiment was carried out at the setup is shown
in Fig. 1. The gas inlet was in vacuum chamber (1) di-
rectly. The working gas is Ar required for stable arc dis-
charge only, so that it does not influence on the plasma
flow dynamics. The pulsed cathodic arc plasma gun
include: 2 − metal cathode, 3 − ring-shaped insulator
around the cathode, 4 – igniter electrode. The PL in-
clude electrodes (5, 7) and magnet circuit based on per-
manent magnets. Also we have diagnostic tools, lang-
muir probe (10) and moved collectors (9). A repetitively
pulsed cathodic arc plasma gun (i.e., a MEVVA ion
source without the ion optic extraction system) was used
to produce energetically streaming copper plasma. The
PL is of 140 mm length and 80 mm aperture. It includes
three cylindrical electrodes with different lengths in a
magnetic field.
Fig. 1. The experimental setup.
1 – vacuum chamber; 2 – cathode; 3 – insulator;
4 – igniter; 5 – electrode; 6 – magnets; 7 – electrode;
8 – magnetic field line; 9 – collector; 10 – Langmuir probe
The lens outer electrodes are grounded and one of
them is anode of discharge of MEVVA source. The cen-
tral electrode was biased under different positive and
negative potentials. The vacuum chamber possessed
sealed window which enabled different experimental
studies (plasmadynamical measurements by sectioned
collector, emission spectra analysis by CCD spectrome-
ter, charge state distribution (CSD) by magnetic sector
analyzer, substrate for coating deposition). For meas-
urement pulse currents and electric potentials traditional
electrophysical methods are used.
In the our experiments we use copper cathode. The
arc form the dense low temperature metal plasma from
the cathode material. The arc current was from 50 to
200 A. The pulse duration was 100…600 μs and repeti-
tively pulsed at 0.5…5 pulses per second. The base vac-
uum chamber pressure was 1.5×10-6 Torr.
2. RESULTS AND DISCUSSION
Let us discuss some results of studies of the plas-
madynamical characteristics of the plasma flow in the
our system.
Propagation of the plasma beam in the free space af-
ter PL is illustrated in Fig. 2. The transmission of the
transportation space increases in all cases. The flow
focusing exists in case the floating potential (b) at the
central lens electrode, it is higher in the case of the posi-
tive potential (a) and is also present in case of the nega-
tive potential (c). The data shown are the averages over
six plasma pulses. The z-axis zero is the plasma lens
ISSN 1562-6016. ВАНТ. 2018. №4(116) 37
exit plane. We believe that in case of floating potential
(Fig. 2,b) this effect is due to self-consistent mode
formed in the lens volume.
a
b
c
Fig. 2. Radial current density distribution, Id = 100 A,
P= 1.5⋅10-6 Torr, В = 0.03 T throughout the plasma
pulse: a) +50 V on central collector;
b) floating potential; c) -400 V
Note the measurements show the formation of a pos-
itive self-sustained potential of about 10 V at the central
electrode upon transport of the plasma stream. Also we
can see focusing of the streaming plasma at the exit of
the lens for negative applied potential (-500 V, actual
potential is -400V) at the central lens electrode. This
could be due to generation of fast electrons from sec-
ondary emission by ion impact on the inner surface of
the central lens electrode. These electrons together with
slow plasma electrons can accumulate at the axis and
provide ion focusing due to a polarization effect. In pure
plasmaoptical regime with applied positive potential,
actual potential being just about +50 V, the central elec-
trode serves as the second anode of vacuum-arc dis-
charge and plasmaoptical focusing effect appearance in
this case is not so clear. The obtained results have good
agreement with general theoretical approaches.
The Fig. 3 shows the radial profile of plasma beam
in free space after PL. Fig. 3,a shows the profile after
the PL with and without the negative potential on cen-
tral electrode, approximately -400 V. The curves exhibit
the ion saturation current density at bias potential
-100 V. One can see an increase of the ion current densi-
ty by a factor about 5.
a
b
Fig. 3. The ion saturation current density profile.
a) radial distribution: 1 – UPL=0; 2 – UPL=-400 V;
b) normalized radial distribution: 1 – UPL=0;
2 – UPL=-400 V; Id=100 A; B=0.03 T
The Fig. 3,b shows the normalized profile of the
beam for the case Fig. 3,a. The half-width of the profile
decreases with increasing of a negative potential on PL.
It shows not only increasing transmission of transporta-
tion space but also focusing of low energy plasma flow.
The distance for the plane of Fig. 3. from the PL exit is
more than 70 mm. There is no focus plane for -400 V on
central PL electrode. The ion saturation current density
profile along radius for the position of 50 mm from PL
exit is shown in Fig. 4. Here we have the current density
rising by a factor of approximately 15.
Fig. 4. The ion saturation current density profile.
1 – UPL=0; 2 – UPL=-400 V; Id=100 A; B=0.03 T
As one can see, the ion current density at longer dis-
tance from the lens (see Fig. 3) with negative potential
R (cm)
ISSN 1562-6016. ВАНТ. 2018. №4(116) 38
on PL is much higher than that at closer distance (see
Fig. 4) when there is no potential.
The optical emission spectroscopy measurements
were carried out to obtain additional information about
the processes in the plasma volume. The results for the
case of negative applied potential at the central elec-
trode are shown in Fig. 5. The results shown are the
average over 20 plasma pulses. One can see the signifi-
cantly increased relative intensity of the lines both of
copper atoms and single charged copper ions within the
plasma with the increasingly negative central electrode.
The last can indicate the presence of fast electrons in the
plasma lens volume. The presence of fast electrons in
the PL volume can also explain the results presented in
Fig. 6.
a
b
Fig. 5. Optical emission spectra of the discharge plasma
for different central lens electrode potentials:
a) floating; b) -3 kV. B = 0.03 T; pressure 1.5⋅10-6 Torr
The Fig. 6 shows CSD in a copper low energy plas-
ma flow with and without the PL. It is noticeable that
changing the lens parameters we can influence on state
charge distribution in the flow. It is also noticeable that
the presence of a magnetic field and a potential on the
central electrode of the lens leads to a significant in-
crease in the current of all charge states in the flow. The
latter is due to the overall improvement of flow through
the cathode to the target.
In order to make CSD measurements, our combined
system was transformed into ion source with an emis-
sion grid and accel-decel ion optical system to provide
formation ion beam with extraction voltage 15 kV suit-
able for testing in the magnetic sector analyzer. The
obtained results show the peculiarities of CSD changing
plainly in case of applied negative potential to the cen-
tral lens electrode and magnetic field presence (see
Fig. 6).
Behavior of the spectrum lines can be also easily ex-
plained by the presence of fast electrons in the volume.
In essence, these electrons evaporate microdroplets and
add neutral copper atoms into the volume that lead to
essential increasing a rate of resonant charge exchange
process. Note, the emission current of the extracted ion
beam, currents of Cu ions with charges from 1+ till 4+
drastically increase with application of negative poten-
tial and magnetic field on the contrary to the case with-
out magnetic field and negative lens potential. Particu-
larly, emission current increases approximately from
0.25 to 0.5 A, Cu3+ from 0.45 to 1.8 mA, Cu1+ from 0.05
to 0.75 mA. These data indicate on focusing low energy
plasma flow towards emission grid and exhibit exist-
ence fast electrons in the flow propagation area.
a
b
Fig. 6. The examples of charge state distribution
of Cu ions, p= 1.5⋅10-6, B=0 (a) and B=0.03 T (b)
Carried out computer modeling has shown the ap-
pearance of high-energetic secondary electrons under
negative potential applied to the central lens electrode.
These electrons accumulate at the axis and could pro-
vide the ion flow focusing.
Note that appearance of electron beam formed self-
consistently by ion-electron secondary emission in the
near-wall plasma layer from the internal surface of the
lens central electrode significantly affects on evapora-
tion and removal of the micro-droplets from the plasma
flow and thereby improves the quality of obtained metal
coating. Preliminary studies demonstrate that with nega-
tive potential increase the number of droplets essentially
decreases in case of the filter use. Maximum size of
droplets reaching the sample surface also decreases.
CONCLUSIONS
Here we present and discuss the new upgraded sys-
tem that combines the MEVVA plasma source with an
axially symmetric electrostatic plasma-optical lens. We
have studied peculiarities of plasmodynamical, optical,
charge state characteristics and the Cu film deposition
under different conditions. The obtained results show
the presence of the fast electrons and their effect on a
low energy high-density metal plasma flow propagating
through PL, improvement of charge state distribution
and increase of total ion beam extraction current.
These results open up a new attractive way for fur-
ther development and application the erosion plasma
sources for syntezis thin films with given properties as
well as creation new generation MEVVA ion sources.
ISSN 1562-6016. ВАНТ. 2018. №4(116) 39
This work was supported in part by projects PL-18-
32 and P13/18-32, V191.
REFERENCES
1. I.G. Brown. Vacuum arc ion sources // Rev. Sci. In-
strum. 1994, v. 65, p. 3061.
2. Alexey Goncharov. Invited Review Article: The
electrostatic plasma lens // Rev. Sci. Instrum. 2013,
v. 84, p. 021101.
3. A.A. Goncharov. Recent development of plasma
optical systems (invited) // Rev. Sci. Instrum. 2016,
v. 87, p. 02B901.
4. A. Bugaev, A. Dobrovolskiy, A. Goncharov,
V. Gushenets, I. Litovko, I. Naiko, and E. Oks. Self-
sustained focusing of high-density streaming plasma
// J. Appl. Phys. 2017, v. 121, p. 043301
5. A.A. Goncharov, V.I. Maslov, and A. Fisk. Novel
Plasma-optical Device for the Elimination of Drop-
lets in Cathodic Arc Plasma Coating // 55th Annual
Techn. Conf. Proceedings of the Society of Vacuum
Coaters (SVC). 2012, April 28-May 3, Santa Clara,
California. USA, p. 441.
6. A. Fisk, V. Maslov and A. Goncharov: U.S. Patent
application № 2014/0034484A1 (06.02 2014).
Article received 13.06.2018
ПОСЛЕДНИЕ РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ СОВРЕМЕННЫХ
ПЛАЗМООПТИЧЕСКИХ УСТРОЙСТВ
А.А. Гончаров, А.Н. Добровольский, В.Ю. Баженов, И.В. Литовко, И.В. Найко, Л.В. Найко,
Е.Г. Костин, И.М. Проценко
Предложена и исследуется комбинированная система из вакуумно-дугового испарителя и плазмооптиче-
ского устройства в геометрии плазменной линзы (ПЛ). Исследованы плазмодинамические характеристики
низкоэнергетического плазменного потока высокой плотности, проходящего через ПЛ. Использование ПЛ
для транспортировки низкоэнергетических ионных потоков с большим током позволяет улучшить прохож-
дение плазмы к мишени и уменьшить содержание микрокапель благодаря наличию быстрых электронов в
объеме линзы.
ОСТАННІ РЕЗУЛЬТАТИ ДОСЛІДЖЕНЬ СУЧАСНИХ
ПЛАЗМООПТИЧНИХ ПРИСТРОЇВ
О.А. Гончаров, А.М. Добровольський, В.Ю. Баженов, І.В. Літовко, І.В. Найко, Л.В. Найко,
Є.Г. Костін, І.М. Проценко
Запропонована та досліджується комбінована система, що складається з вакуумно-дугового джерела пла-
зми та плазмооптичного пристрою в геометрії плазмової лінзи (ПЛ). Досліджено плазмодинамічні характе-
ристики низькоенергетичного плазмового потоку високої щільності, що проходить крізь ПЛ. Застосування
ПЛ задля транспортування низькоенергетичних іонних потоків з великим струмом дозволяє покращити про-
ходження плазми до мішені та зменшити вміст мікрокрапель завдяки присутнім в об’ємі лінзи швидким еле-
ктронам.
Introduction
1. Experimental Conditions
2. Results and discussion
CONCLUSIONS
references
Последние результаты исследованиЙ современных плазмооптических устройств
Останні результати досліджень сучасних плазмооптичних пристроїв
|