On the Lyapunov convexity theorem with appications to sign-embeddings
Доведено (теорема 1), що для банахового простору X еквівалентні такі твердження: 1) множина значень будь-якої X-значної σ-адитивної безатомної міри з скінченною варіацією має опукле замикання; 2) простір L₁ не можна знако-вкласти в X. It is proved (Theorem 1) that for a Banach space X the follo...
Gespeichert in:
| Veröffentlicht in: | Український математичний журнал |
|---|---|
| Datum: | 1992 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
1992
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/165139 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On the Lyapunov convexity theorem with appications to sign-embeddings / V.М. Kadets, M.M. Popov // Український математичний журнал. — 1992. — Т. 44, № 9. — С. 1192–1200. — Бібліогр.: 14 назв. — англ. |