On the Lyapunov convexity theorem with appications to sign-embeddings

Доведено (теорема 1), що для банахового простору X еквівалентні такі твердження: 1) мно­жина значень будь-якої X-значної σ-адитивної безатомної міри з скінченною варіацією має опукле замикання; 2) простір L₁ не можна знако-вкласти в X. It is proved (Theorem 1) that for a Banach space X the follo...

Full description

Saved in:
Bibliographic Details
Published in:Український математичний журнал
Date:1992
Main Authors: Kadets, V.М., Popov, M.M.
Format: Article
Language:English
Published: Інститут математики НАН України 1992
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/165139
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On the Lyapunov convexity theorem with appications to sign-embeddings / V.М. Kadets, M.M. Popov // Український математичний журнал. — 1992. — Т. 44, № 9. — С. 1192–1200. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine