Digital identification of the emission spectrum lines of magnetron discharge
To obtain the qualitative and quantitative characteristics of the discharge plasma spectrum in the Python programming language, a multifunctional interactive GUI-application OSA (Optical Spectrum Analyzed) was created. The application allows you to download a digital image of the optical spectrum, a...
Збережено в:
| Опубліковано в: : | Вопросы атомной науки и техники |
|---|---|
| Дата: | 2019 |
| Автори: | , , , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2019
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/195163 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Digital identification of the emission spectrum lines of magnetron discharge / I.A. Afanasіeva, S.N. Afanasiev, V.V. Bobkov, V.V. Gritsyna, D.R. Drozdov, Yu.E. Logachev, A.A. Skrypnyk, D.I. Shevchenko // Problems of atomic science and technology. — 2019. — № 4. — С. 35-38. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-195163 |
|---|---|
| record_format |
dspace |
| spelling |
Afanasіeva, I.A. Afanasiev, S.N. Bobkov, V.V. Gritsyna, V.V. Drozdov, D.R. Logachev, Yu.E. Skrypnyk, A.A. Shevchenko, D.I. 2023-12-03T14:35:47Z 2023-12-03T14:35:47Z 2019 Digital identification of the emission spectrum lines of magnetron discharge / I.A. Afanasіeva, S.N. Afanasiev, V.V. Bobkov, V.V. Gritsyna, D.R. Drozdov, Yu.E. Logachev, A.A. Skrypnyk, D.I. Shevchenko // Problems of atomic science and technology. — 2019. — № 4. — С. 35-38. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 34.50.Dy, 34.50.Fa, 39.30. +W https://nasplib.isofts.kiev.ua/handle/123456789/195163 To obtain the qualitative and quantitative characteristics of the discharge plasma spectrum in the Python programming language, a multifunctional interactive GUI-application OSA (Optical Spectrum Analyzed) was created. The application allows you to download a digital image of the optical spectrum, automatically determine the wavelength of the selected spectral line and do elements interpretation. Для отримання якісних і кількісних характеристик спектра плазми розряду на мові програмування Python створено багатофункціональний діалоговий GUI-додаток OSA (Optical Spectrum Analyzed). Додаток дозволяє завантажити цифрове зображення оптичного спектра, в автоматичному режимі визначити довжину хвилі обраної спектральної лінії і виконати елементну інтерпретацію. Для получения качественных и количественных характеристик спектра плазмы разряда на языке программирования Python создано многофункциональное диалоговое GUI-приложение OSA (Optical Spectrum Analyzed). Приложение позволяет загрузить цифровое изображение оптического спектра, в автоматическом режиме определить длину волны выбранной спектральной линии и выполнить элементную интерпретацию. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Non-relativistic and relativistic electronics Digital identification of the emission spectrum lines of magnetron discharge Цифрова ідентифікація ліній емісійного спектра магнетронного розряду Цифровая идентификация линий эмиссионного спектра магнетронного разряда Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Digital identification of the emission spectrum lines of magnetron discharge |
| spellingShingle |
Digital identification of the emission spectrum lines of magnetron discharge Afanasіeva, I.A. Afanasiev, S.N. Bobkov, V.V. Gritsyna, V.V. Drozdov, D.R. Logachev, Yu.E. Skrypnyk, A.A. Shevchenko, D.I. Non-relativistic and relativistic electronics |
| title_short |
Digital identification of the emission spectrum lines of magnetron discharge |
| title_full |
Digital identification of the emission spectrum lines of magnetron discharge |
| title_fullStr |
Digital identification of the emission spectrum lines of magnetron discharge |
| title_full_unstemmed |
Digital identification of the emission spectrum lines of magnetron discharge |
| title_sort |
digital identification of the emission spectrum lines of magnetron discharge |
| author |
Afanasіeva, I.A. Afanasiev, S.N. Bobkov, V.V. Gritsyna, V.V. Drozdov, D.R. Logachev, Yu.E. Skrypnyk, A.A. Shevchenko, D.I. |
| author_facet |
Afanasіeva, I.A. Afanasiev, S.N. Bobkov, V.V. Gritsyna, V.V. Drozdov, D.R. Logachev, Yu.E. Skrypnyk, A.A. Shevchenko, D.I. |
| topic |
Non-relativistic and relativistic electronics |
| topic_facet |
Non-relativistic and relativistic electronics |
| publishDate |
2019 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Цифрова ідентифікація ліній емісійного спектра магнетронного розряду Цифровая идентификация линий эмиссионного спектра магнетронного разряда |
| description |
To obtain the qualitative and quantitative characteristics of the discharge plasma spectrum in the Python programming language, a multifunctional interactive GUI-application OSA (Optical Spectrum Analyzed) was created. The application allows you to download a digital image of the optical spectrum, automatically determine the wavelength of the selected spectral line and do elements interpretation.
Для отримання якісних і кількісних характеристик спектра плазми розряду на мові програмування Python створено багатофункціональний діалоговий GUI-додаток OSA (Optical Spectrum Analyzed). Додаток дозволяє завантажити цифрове зображення оптичного спектра, в автоматичному режимі визначити довжину хвилі обраної спектральної лінії і виконати елементну інтерпретацію.
Для получения качественных и количественных характеристик спектра плазмы разряда на языке программирования Python создано многофункциональное диалоговое GUI-приложение OSA (Optical Spectrum Analyzed). Приложение позволяет загрузить цифровое изображение оптического спектра, в автоматическом режиме определить длину волны выбранной спектральной линии и выполнить элементную интерпретацию.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/195163 |
| citation_txt |
Digital identification of the emission spectrum lines of magnetron discharge / I.A. Afanasіeva, S.N. Afanasiev, V.V. Bobkov, V.V. Gritsyna, D.R. Drozdov, Yu.E. Logachev, A.A. Skrypnyk, D.I. Shevchenko // Problems of atomic science and technology. — 2019. — № 4. — С. 35-38. — Бібліогр.: 11 назв. — англ. |
| work_keys_str_mv |
AT afanasíevaia digitalidentificationoftheemissionspectrumlinesofmagnetrondischarge AT afanasievsn digitalidentificationoftheemissionspectrumlinesofmagnetrondischarge AT bobkovvv digitalidentificationoftheemissionspectrumlinesofmagnetrondischarge AT gritsynavv digitalidentificationoftheemissionspectrumlinesofmagnetrondischarge AT drozdovdr digitalidentificationoftheemissionspectrumlinesofmagnetrondischarge AT logachevyue digitalidentificationoftheemissionspectrumlinesofmagnetrondischarge AT skrypnykaa digitalidentificationoftheemissionspectrumlinesofmagnetrondischarge AT shevchenkodi digitalidentificationoftheemissionspectrumlinesofmagnetrondischarge AT afanasíevaia cifrovaídentifíkacíâlíníiemísíinogospektramagnetronnogorozrâdu AT afanasievsn cifrovaídentifíkacíâlíníiemísíinogospektramagnetronnogorozrâdu AT bobkovvv cifrovaídentifíkacíâlíníiemísíinogospektramagnetronnogorozrâdu AT gritsynavv cifrovaídentifíkacíâlíníiemísíinogospektramagnetronnogorozrâdu AT drozdovdr cifrovaídentifíkacíâlíníiemísíinogospektramagnetronnogorozrâdu AT logachevyue cifrovaídentifíkacíâlíníiemísíinogospektramagnetronnogorozrâdu AT skrypnykaa cifrovaídentifíkacíâlíníiemísíinogospektramagnetronnogorozrâdu AT shevchenkodi cifrovaídentifíkacíâlíníiemísíinogospektramagnetronnogorozrâdu AT afanasíevaia cifrovaâidentifikaciâliniiémissionnogospektramagnetronnogorazrâda AT afanasievsn cifrovaâidentifikaciâliniiémissionnogospektramagnetronnogorazrâda AT bobkovvv cifrovaâidentifikaciâliniiémissionnogospektramagnetronnogorazrâda AT gritsynavv cifrovaâidentifikaciâliniiémissionnogospektramagnetronnogorazrâda AT drozdovdr cifrovaâidentifikaciâliniiémissionnogospektramagnetronnogorazrâda AT logachevyue cifrovaâidentifikaciâliniiémissionnogospektramagnetronnogorazrâda AT skrypnykaa cifrovaâidentifikaciâliniiémissionnogospektramagnetronnogorazrâda AT shevchenkodi cifrovaâidentifikaciâliniiémissionnogospektramagnetronnogorazrâda |
| first_indexed |
2025-11-25T22:49:29Z |
| last_indexed |
2025-11-25T22:49:29Z |
| _version_ |
1850574254151565312 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2019. №4(122) 35
DIGITAL IDENTIFICATION OF THE EMISSION SPECTRUM LINES
OF MAGNETRON DISCHARGE
I.A. Afanasіeva1, S.N. Afanasiev1,2, V.V. Bobkov1*, V.V. Gritsyna1, D.R. Drozdov1,
Yu.E. Logachev1, A.A. Skrypnyk1, D.I. Shevchenko1
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine;
2National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
*E-mail: plip@karazin.ua
To obtain the qualitative and quantitative characteristics of the discharge plasma spectrum in the Python pro-
gramming language, a multifunctional interactive GUI-application OSA (Optical Spectrum Analyzed) was created.
The application allows you to download a digital image of the optical spectrum, automatically determine the wave-
length of the selected spectral line and do elements interpretation.
PACS: 34.50.Dy, 34.50.Fa, 39.30. +W
INTRODUCTION
Optical emission spectrometry is a widely used and
highly informative method for diagnostic of magnetron
discharge (MD) plasma [1 - 4]. Using spectrometric
methods, it is possible to investigate a number of pro-
cesses and phenomena occurring in plasma by studying
the electromagnetic radiation of plasma particles in an
excited state. In particular, by the intensity of the corre-
sponding spectral line, one can judge the population of
the excited states of plasma particles; the spatial distri-
bution of the spectral line intensity along a defined
direction gives information on the distribution of excit-
ed plasma particles along this direction; knowledge of
the absolute continuum of plasma radiation gives infor-
mation about the concentration of plasma electrons and
the function of the energy distribution. The ion compo-
sition of plasma can be estimated from the ratio of the
intensities of the spectral lines of the various plasma
components.
Traditionally, the photographic method of radiation
registering with photographic materials (film, photographic
plates) and analyzing their blackening was used to record
plasma radiation [5]. This method of radiation recording
and analyzing is very laborious and gives a large experi-
mental error. Nowadays, with the onset of CCD matrices
[6], new methods for radiation detecting and analyzing
using digital techniques are being developed.
The paper presents the results of obtaining the emis-
sion spectrum of the MD by registering it using a CCD
matrices and further analyzing (determining the wave-
length of the spectrum and its interpretation) with the
created software.
1. EXPERIMENTAL SETUP
The block diagram of the experimental setup [7]
shown in Fig. 1.
A magnetron sputtering devise (2) (MSD) was
placed in a vacuum chamber (1), which acts as the an-
ode. The MSD target was a tungsten disk with a diame-
ter of 20 mm and a thickness of 0.2 mm. The magnetic
field induced by the system of permanent magnets pro-
vides the intensity of the tangential component of the
magnetic induction of 0.05 T near the cathode surface.
The chamber was pre-evacuated to a pressure of 10-2 Pa.
Argon was used as a buffer gas, which was supplied
into the chamber with the CNA-2 inlet system. The
pressure of the working gas changed in the range of
7…14 Pa. The light emission of the bright area of the
discharge was extracted through the window (3) and
was focused by the long-focus lens (4) on the entrance
slit of the spectral device (5). In this work, a three-prism
glass spectrograph ISP-51 was used, in which the radia-
tion separation into a spectrum in the wavelength range
of 400…700 nm. Along the height (h) of the focal
plane, the radiation of the discharge area (L) is project-
ed, they are connected by the relation L = kh, where k is
the magnification in the lens-spectrometer system.
Fig. 1. Block diagram of the experimental setup
The glow spectrum, which was focused on the exit
slit of the spectrograph collimator, was recorded with a
digital camera (6), and then transmitted via USB to a PC
(7). The result of each measurement session was a pho-
tograph of the emission spectrum of the plasma area
under investigation in *.jpg format, which was then
saved in the data bank and allowed further detailed
study of the emission spectra for different operating
parameters of the MD.
Fig. 2 shows a part of the emission spectrum of par-
ticles excited in a magnetron discharge with a tungsten
target. The magnetron parameters are: discharge current
Id = 70 mA, discharge voltage Ud = 350 V, argon pres-
sure pAr = 10 Pa.
mailto:plip@karazin.ua
ISSN 1562-6016. ВАНТ. 2019. №4(122) 36
As can be seen from the figure, the spectrum of the
area of bright glow of a magnetron discharge is a set of
spectral lines of certain wavelength. Information on the
wavelengths of the spectral lines that present in the
optical spectrum allows us to determine the qualitative
composition of the plasma of the magnetron discharge.
The main step in processing a digital image is the de-
termination of the wavelength of a particular line and its
interpretation, that is, the determination of belonging the
analyzed line to a certain chemical element in a certain
charge and energy state [8].
Fig. 2. Part of the emission spectrum of the ionization zone of the magnetron discharge
2. METHODS OF DIGITAL OPTICAL
IMAGE PROCESSING
An OSA application (Optical Spectrum Analyzed)
[9] has been developed for processing digital images of
MD plasma spectra. It allows obtaining information on
the state of a emitting particle directly with a computer
without using any additional measuring devices. This
application was created in the Python language [10]
using the PIL module (a special multifunctional library
for working with images, which allows both to perform
the necessary manipulations with the image and to ac-
cess each individual pixel).
The OSA application has a scenario cycle of scan-
ning events generated by user actions such as keyboard
input, keystrokes, or coursor movement. For each poten-
tial event, a function is assigned that will be called when
this event occurs. For each function, it is possible to
create a specific graphic component (widget), which can
be placed on the application canvas.
Methods of digital image processing imply working
with raster images, the smallest unit of which is a pixel,
characterized by intensity (color depth). From a mathe-
matical point of view, an image is a three-dimensional
matrix f[x,y], where x and y is an integer describing the
number of the column or row of the matrix where this
element with the intensity I[x,y] is located. The intensity
range is from 0 (black) to 255 (white). In the OSA ap-
plication an algorithm for conversion a digital image
into such a three-dimensional array of numbers is real-
ized. Any other data can be obtained only as a result of
applying a number of procedures for processing and
analyzing the obtaining set of numbers. The results of
mathematical processing are visualized in digital pho-
tography, which allows online monitoring of the process
of obtaining physical information.
2.1. DETERMINATION OF THE WAVELENGTH
OF THE SPECTRAL LINE
At the first stage of spectrum image processing, the
OSA application binds the measuring coordinate system
(pixel) to the experimental one. In the corresponding
widgets (Fig. 3, inset at the top) the wavelengths for the
two reference spectral lines are entered, and in the im-
age the position of the coordinates of these lines in
pixels are recorded (see Fig. 2, closed circles in square
frames).
Binding is done if wavelengths of reference lines are
known. Otherwise, it is necessary to get the reference
spectrum (of neon, mercury or hydrogen lamps), for
which the interpretation in λ lines is known.
For the ISP-51 spectrograph at separating into a
spectrum nonlinear dispersion is characteristic [5]; this
implies the presence of a nonlinear calibration scale (see
Fig. 3, the graph) connecting the values of the l line
position to the wavelength λ in nm. The ordinate axis on
400 450 500 550 600 650 700
0
10
20
30
400 450 500 550 600 650 700
1000
2000
3000
4000
l,
m
m
x,
p
ix
el
l, nm
Fig. 3. Calibration of the pixel coordinate system
with the experimental. Above – the OSA application
widgets, below – a graduated curve of the digital
frame f (λ,l) for conversion to the pixel scale f (λ,x)
ISSN 1562-6016. ВАНТ. 2019. №4(122) 37
the right shows the scale of the values of the digital
matrix x in pixels. In the available wavelength range for
the reference lines on the abscissa scale by interpolation
the corresponding values on the ordinate scale (left) in
mm are found. This allows you to enter the pixel-mm
scaling factor and, using inverse interpolation, automat-
ically determine the wavelength λ for an arbitrary line
on the digital image in the pixel coordinate system.
In Fig. 2 closed circles indicate the position of the
line under study, and vertically arranged figures indicate
the wavelength λ of the line. A multiple measurement of
the wavelengths of several spectral lines was made and
the statistical error δl was obtained when determining
the wavelength using the OSA application. The error δl
on average is in the range from 0.075 to 0.2 nm, de-
pending on the distance of the measured line from the
first reference line.
Fig. 2 shows, that the characteristic of the spectral
line is its high intensity (at least, the excess over the
background intensity Ifon). The experimental value
n
fon
i
i=1
I ( I ) / n= ∑ , where Ii − the pixel intensities in the
range between the reference points, n − the number of
pixels.
2.2. DETERMINATION OF THE ELEMENTAL
COMPOSITION OF THE SPECTRUM
At the second stage, the search for the most probable
elements occurs, excited atoms or ions of which are
present in the discharge plasma. The database of spec-
tral lines [11] contains a pattern set (Nelem) of the most
intense lines for each element, for which the charge
state of an element atom is indicated (I is the atomic
spectrum, II is the ion spectrum), line intensity (Il) and
excitation energy (E*, eV). As a rule, the number of
Nelem for different elements is different.
Using the interpolation method, the value of the
wavelength lsh of the pattern line (in nm) was plotted on
a digital image. The Ish intensity value was also auto-
matically determined. Since there is an error in deter-
mining the position of a line in a digital image, in addi-
tion to the intensity of a specific point, the intensity of
the contour around this point was determined. The in-
tensity of the contour Icntr for the matrix 3×3 was de-
fined as the Sobel operator as follows: Icntr = (Ix
2+Iy
2)0.5,
where
3 3
up down
x x x
1 1
I I I= −∑ ∑ , and
3 3
left right
y y y
1 1
I I I= −∑ ∑ ;
Ix
up and Ix
down – the top and bottom rows of the matrix
3×3, Iy
left and Iy
right are the left and right columns of the
matrix. If Ish > Ifon and Icntr∼ Ifon, then this line is consid-
ered to be present in the spectrum.
Sequential search, in the automatic mode, for each
element determines the probability of its presence in the
spectrum ηelem=Nexist/Nelem. The number of Nexist lines is
defined as the sum of patterned lines that satisfy the
condition of presence in the spectrum. If a large number
of intense spectral lines of a certain element coincide
with a number of lines present in the MD spectrum, the
corresponding chemical element can be considered
present in the spectrum with very high reliability. For
further analysis in a separate widget you can pointed out
the limit value of the probability ηlim (in the interval
0…1), which allows you to select from all elements
only those with ηelem>ηlim.
2.3. INTERPRETATION OF SPECTRAL LINES
An algorithm has been developed that allows for
each experimentally determined wavelength of a sepa-
rate line l to associate the most probable value from the
table of spectral lines. The data for the elements with
ηelem>ηlim are taken into consideration. For each spectral
line there are 3 comparison parameters, on the basis of
which the spectral lines are interpreted: directly the
wavelength of the line, the intensity of this line and its
excitation energy.
By a simple comparative search, the interval of val-
ues is fixed in the table, in which one of the experi-
mental values of l gets. A boundary criterion is intro-
duced for the reliability of tabulated experimentally
determined values of the wavelength l, determined by
the measurement error δl. If the boundary values are in
the confidence range, then from the two limit values, the
one with the maximum intensity value Il is selected. In
case of equality in this parameter, the third comparison
element is used − the excitation energy E*. The ad-
vantage is given to the variant with a smaller value of
the excitation energy. It should be noted that the lines of
various elements can be blended, therefore experimental
lines, in which a variant of several elements (n) is pos-
sible in the boundary range, have an interpretative prob-
ability proportional to 1/ n.
Interpretation of spectral lines
Data l, nm
experiment 543.3 487.9 472.8 466.4 454.5
interpreta-
tion 543.5 W I 487.9 Ar I
487.8 W I 472.7 Ar I 466.3 W I 454.5 Ar II
The table shows the interpretation of a number of
lines defined in Fig. 2 in the experiment with a tungsten
target and argon as a buffer gas.
CONCLUSIONS
To solve actual problems associated both with the
development of the theory of a magnetron discharge,
and with the expansion of the field of its practical appli-
cation, a digital technique for processing the emission
spectra of the discharge plasma has been proposed. A
graphic OSA application has been created that allows to
obtain qualitative and quantitative characteristics (wave-
length, interpretation and intensity) of the plasma spec-
tral line of a magnetron discharge. A procedure has been
created to gain access to the numerical matrix of a digi-
tal image of the emission spectrum of excited particles
ISSN 1562-6016. ВАНТ. 2019. №4(122) 38
and to make the conversion from the pixel coordinate
system of a photo to the experiment coordinate system.
The algorithms to determine the wavelength of a specif-
ic spectral line has been developed. Analysis by wave-
length allows identifying the charge and energy state of
the excited particles, which makes it possible with a
high probability to determine the elemental composition
of the discharge plasma.
The created OSA application, for the convenience of
experimental material processing, has a number of func-
tionalities, such as the simultaneous analysis of several
spectral lines and the recording of each processing ses-
sion into an external information file. The undoubted
advantage of the created application is the open code,
which allows making changes to it, based on the solu-
tion of a specific task.
The proposed technique makes it possible to signifi-
cantly speed up the process of obtaining physical infor-
mation and improve the accuracy in determining the
parameters of the spectrum. The digitally obtained pho-
tographs of the emission spectra of the reference ob-
jects, supplemented by the data processed by the OSA
software application, allow you to create a data bank
that includes both atlases of the emission spectra of
various elements in electronic form and the quantitative
parameters of these spectra.
REFERENCES
1. U.A. Zheleznov, V.U. Homich. Eksperimental'nyj
metod passivnoj opticheskoj diagnostiki plazmy //
Prikladnaja fizika. 2011, № 3, p. 60-66 (in Russian).
2. M. Novotne, J. Bulнш, P. Pokorne, et al. Optical
emission and mass spectroscopy of plasma processes
in reactive DC pulsed magnetron sputtering of alu-
minium oxide // Journal of Optoelectronics and Ad-
vanced Materials. 2010, v. 12(3), p. 697-700.
3. V.E. Fortov. Enciklopedija nizkotemperaturnoj
plazmy. Vvodnyj tom II, Kniga II. M.: «Nauka»,
2000, 633 p. (in Russian).
4. V.N. Ochkin. Spektroskopija nizkotemperaturnoj
plazmy. M.: «Fizmatlit», 2006, 472 p. (in Russian).
5. V.I. Malyshev. Vvedenie v jeksperimental'nuju spek-
troskopiju. M.: «Nauka», 1979, 480 p. (in Russian).
6. V. Deckert, W. Kiefer. Scanning multichannel tech-
nique for improved spectrochemical measurements
with a CCD camera and its application to raman
spectroscopy // Applied spectroscopy. 1992,
v. 46(2), p. 322-328.
7. I.A. Afanasіeva, V.V. Bobkov, V.V. Gritsyna, et al.
On excited particle formation in crossed ExH fields
// Vacuum. 2018, v. 149, p. 124-128. (in Russian).
8. A.A. Babushkin, P.A. Bazhulin, F.A. Korolev, et al.
Metody spektral'nogo analiza. M.: Izd. Mosk. Univ.,
1962, 507 p. (in Russian).
9. I.A. Afanasіeva, S.N. Afanasiev, N.A. Azarenkov, et
al. Digital processing of optical emission spectra of
magnetron sputtering plasma system // Problems of
Atomic Science and Technology. Series “Physics of
Radiation Effects and Radiation Materials Science”.
2019, №2(120), p. 164-167.
10. Mark Lutz. Learning Python, 5th Edition Packages.
«O'Reilly Media», 2013, 1648 p.
11. A.N. Zajdel', V.K. Prokof'ev, S.M. Rajskij, et al.
Tablicy spektral'nyh linij. M.: «Nauka», 1977,
800 p. (in Russian).
Article received 18.06.2019
ЦИФРОВАЯ ИДЕНТИФИКАЦИЯ ЛИНИЙ ЭМИССИОННОГО СПЕКТРА МАГНЕТРОННОГО
РАЗРЯДА
И.А. Афанасьева, С.Н. Афанасьев, В.В. Бобков, В.В. Грицына, Д.Р. Дроздов, Ю.Е. Логачев,
А.А. Скрипник, Д.И. Шевченко
Для получения качественных и количественных характеристик спектра плазмы разряда на языке про-
граммирования Python создано многофункциональное диалоговое GUI-приложение OSA (Optical Spectrum
Analyzed). Приложение позволяет загрузить цифровое изображение оптического спектра, в автоматическом
режиме определить длину волны выбранной спектральной линии и выполнить элементную интерпретацию.
ЦИФРОВА ІДЕНТИФІКАЦІЯ ЛІНІЙ ЕМІСІЙНОГО СПЕКТРА МАГНЕТРОННОГО РОЗРЯДУ
І.О. Афанасьєва, С.М. Афанасьєв, В.В. Бобков, В.В. Грицина, Д.Р. Дроздов, Ю.Є. Логачов,
А.О. Скрипник, Д.І. Шевченко
Для отримання якісних і кількісних характеристик спектра плазми розряду на мові програмування Python
створено багатофункціональний діалоговий GUI-додаток OSA (Optical Spectrum Analyzed). Додаток дозволяє
завантажити цифрове зображення оптичного спектра, в автоматичному режимі визначити довжину хвилі
обраної спектральної лінії і виконати елементну інтерпретацію.
https://www.researchgate.net/profile/Jii_Buli
https://www.researchgate.net/profile/Petr_Pokorny3
|