Ion beam system for nanotrimming of functional microelectronics layers
This paper concerns with investigation of the trimming process which uses ion beam etching for high-precision adjustment of the thickness of functional microelectronics layers. The layer deposited on the substrate is etched by scanning focused ion beam; its position and power is regulated accordin...
Gespeichert in:
| Datum: | 2011 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2011
|
| Schriftenreihe: | Вопросы атомной науки и техники |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/90892 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Ion beam system for nanotrimming of functional microelectronics layers / A.A. Bizyukov, I.A. Bizyukov, O.I. Girka, K.N. Sereda, V.V. Sleptsov, M. Gutkin, S. Mishin // Вопросы атомной науки и техники. — 2011. — № 1. — С. 110-112. — Бібліогр.: 3 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-90892 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-908922025-02-23T18:15:48Z Ion beam system for nanotrimming of functional microelectronics layers Іонно-променева система нанорозмірного полірування функціональних шарів мікроелектроніки Ионно-лучевая система наноразмерной полировки функциональных слоев микроэлектроники Bizyukov, A.A. Bizyukov, I.A. Girka, O.I. Sereda, K.N. Sleptsov, V.V. Gutkin, M. Mishin, S. Низкотемпературная плазма и плазменные технологии This paper concerns with investigation of the trimming process which uses ion beam etching for high-precision adjustment of the thickness of functional microelectronics layers. The layer deposited on the substrate is etched by scanning focused ion beam; its position and power is regulated according to the topography of layer non-uniformity. The trimming allows to create pre-defined topography of the non-uniformity with accuracy down to 4 Å and decrease the roughness of the surface. Досліджено процес коригувального іонно-променевого травлення для регулювання з високою точністю товщини функціональних шарів мікроелектроніки. Функціональний шар на підкладці витравлюється скануючим сфокусованим іонним пучком, локалізація та потужність якого відповідають топографії неоднорідності товщини функціонального шару. Показана можливість регулювання розподілу товщини плівок по поверхні підкладок до +/-4 Å та зменшення шорсткості поверхні. Исследован процесс корректирующего ионно-лучевого травления для регулировки с высокой точностью толщины функциональных слоев микроэлектроники. Функциональный слой на подложке травится сканирующим сфокусированным ионным пучком, локализация и мощность которого соответствуют топографии неоднородности толщины функционального слоя. Показана возможность регулировки распределения толщины пленок по поверхности подложек до +/-4 Å и уменьшения шероховатости поверхности. 2011 Article Ion beam system for nanotrimming of functional microelectronics layers / A.A. Bizyukov, I.A. Bizyukov, O.I. Girka, K.N. Sereda, V.V. Sleptsov, M. Gutkin, S. Mishin // Вопросы атомной науки и техники. — 2011. — № 1. — С. 110-112. — Бібліогр.: 3 назв. — англ. 1562-6016 PACS: 52.40.Hf https://nasplib.isofts.kiev.ua/handle/123456789/90892 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии |
| spellingShingle |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии Bizyukov, A.A. Bizyukov, I.A. Girka, O.I. Sereda, K.N. Sleptsov, V.V. Gutkin, M. Mishin, S. Ion beam system for nanotrimming of functional microelectronics layers Вопросы атомной науки и техники |
| description |
This paper concerns with investigation of the trimming process which uses ion beam etching for high-precision
adjustment of the thickness of functional microelectronics layers. The layer deposited on the substrate is etched by
scanning focused ion beam; its position and power is regulated according to the topography of layer non-uniformity.
The trimming allows to create pre-defined topography of the non-uniformity with accuracy down to 4 Å and decrease
the roughness of the surface. |
| format |
Article |
| author |
Bizyukov, A.A. Bizyukov, I.A. Girka, O.I. Sereda, K.N. Sleptsov, V.V. Gutkin, M. Mishin, S. |
| author_facet |
Bizyukov, A.A. Bizyukov, I.A. Girka, O.I. Sereda, K.N. Sleptsov, V.V. Gutkin, M. Mishin, S. |
| author_sort |
Bizyukov, A.A. |
| title |
Ion beam system for nanotrimming of functional microelectronics layers |
| title_short |
Ion beam system for nanotrimming of functional microelectronics layers |
| title_full |
Ion beam system for nanotrimming of functional microelectronics layers |
| title_fullStr |
Ion beam system for nanotrimming of functional microelectronics layers |
| title_full_unstemmed |
Ion beam system for nanotrimming of functional microelectronics layers |
| title_sort |
ion beam system for nanotrimming of functional microelectronics layers |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2011 |
| topic_facet |
Низкотемпературная плазма и плазменные технологии |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/90892 |
| citation_txt |
Ion beam system for nanotrimming of functional microelectronics layers / A.A. Bizyukov, I.A. Bizyukov, O.I. Girka, K.N. Sereda, V.V. Sleptsov, M. Gutkin, S. Mishin // Вопросы атомной науки и техники. — 2011. — № 1. — С. 110-112. — Бібліогр.: 3 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT bizyukovaa ionbeamsystemfornanotrimmingoffunctionalmicroelectronicslayers AT bizyukovia ionbeamsystemfornanotrimmingoffunctionalmicroelectronicslayers AT girkaoi ionbeamsystemfornanotrimmingoffunctionalmicroelectronicslayers AT seredakn ionbeamsystemfornanotrimmingoffunctionalmicroelectronicslayers AT sleptsovvv ionbeamsystemfornanotrimmingoffunctionalmicroelectronicslayers AT gutkinm ionbeamsystemfornanotrimmingoffunctionalmicroelectronicslayers AT mishins ionbeamsystemfornanotrimmingoffunctionalmicroelectronicslayers AT bizyukovaa íonnopromenevasistemananorozmírnogopolíruvannâfunkcíonalʹnihšarívmíkroelektroníki AT bizyukovia íonnopromenevasistemananorozmírnogopolíruvannâfunkcíonalʹnihšarívmíkroelektroníki AT girkaoi íonnopromenevasistemananorozmírnogopolíruvannâfunkcíonalʹnihšarívmíkroelektroníki AT seredakn íonnopromenevasistemananorozmírnogopolíruvannâfunkcíonalʹnihšarívmíkroelektroníki AT sleptsovvv íonnopromenevasistemananorozmírnogopolíruvannâfunkcíonalʹnihšarívmíkroelektroníki AT gutkinm íonnopromenevasistemananorozmírnogopolíruvannâfunkcíonalʹnihšarívmíkroelektroníki AT mishins íonnopromenevasistemananorozmírnogopolíruvannâfunkcíonalʹnihšarívmíkroelektroníki AT bizyukovaa ionnolučevaâsistemananorazmernojpolirovkifunkcionalʹnyhsloevmikroélektroniki AT bizyukovia ionnolučevaâsistemananorazmernojpolirovkifunkcionalʹnyhsloevmikroélektroniki AT girkaoi ionnolučevaâsistemananorazmernojpolirovkifunkcionalʹnyhsloevmikroélektroniki AT seredakn ionnolučevaâsistemananorazmernojpolirovkifunkcionalʹnyhsloevmikroélektroniki AT sleptsovvv ionnolučevaâsistemananorazmernojpolirovkifunkcionalʹnyhsloevmikroélektroniki AT gutkinm ionnolučevaâsistemananorazmernojpolirovkifunkcionalʹnyhsloevmikroélektroniki AT mishins ionnolučevaâsistemananorazmernojpolirovkifunkcionalʹnyhsloevmikroélektroniki |
| first_indexed |
2025-11-24T08:44:52Z |
| last_indexed |
2025-11-24T08:44:52Z |
| _version_ |
1849660688212951040 |
| fulltext |
110 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2011. 1.
Series: Plasma Physics (17), p. 110-112.
ION BEAM SYSTEM FOR NANOTRIMMING OF FUNCTIONAL
MICROELECTRONICS LAYERS
A.A. Bizyukov, I.A. Bizyukov, O.I. Girka, K.N. Sereda, V.V. Sleptsov*, M. Gutkin*, S. Mishin*
V.N. Karazin Kharkov National University, Kharkov, Ukraine;
*Moscow State Aviation Technological University, Moscow, Russia
E-mail: bizyukov@mail.ru
This paper concerns with investigation of the trimming process which uses ion beam etching for high-precision
adjustment of the thickness of functional microelectronics layers. The layer deposited on the substrate is etched by
scanning focused ion beam; its position and power is regulated according to the topography of layer non-uniformity.
The trimming allows to create pre-defined topography of the non-uniformity with accuracy down to 4 Å and decrease
the roughness of the surface.
PACS: 52.40.Hf
1. INTRODUCTION
Ion beams are widely used in both fundamental
scientific studies and in various technological applications
including fusion, high-energy particle accelerators, ion
propulsions, ion-beam microprobes, ion-beam
lithography, implantation, etching, surface polishing, thin
film deposition [1,2], vacuum welding, etc.
This work describes the trimming process based on
ion beam etching for adjustment of the thickness of
microelectronics and optics functional layers with high
precision on the large diameter wafers. This system may
find a variety of its applications, where the initially non-
uniform layer requires the correction of the thickness:
gradient layers, polishing of the surface and coatings on
high-grade optics, memory microelectronic devices, the
adjustment of the electrical resistivity of resistive and
infrared layers.
Particular focus of interest for the trimming is the
manufacturing of the thin film bulk acoustic resonators
(FBAR). The layer thickness of FBAR defines the
bandwidth, which is required to be as narrow as possible.
This can be obtained in high volume production only if
very uniform layer is available; however, this is not
possible to obtain with the help of a conventional
deposition process.
2. EXPERIMENTAL TECHNIQUES
AND RESULTS
The experiments were performed using the ion beam
trimming installation for high-precision adjustment of the
thickness of functional microelectronics layers which
utilizes the wafers with a diameter of 100…200 mm
(Fig. 1). The system is mounted inside the vacuum
camera (1), which provides the residual pressure of 10-7
Torr (working pressure is 10-5 Torr) with the use of
turbomolecular pump. The ion-beam system consists of
ion source generating the ion beams of the keV range (2),
coordinate system for the positioning and scanning (3, 4).
The coordinate system is controlled through the
specialized software and allows precise local etching of
the material.
Fig. 1 shows the scheme of the trimming device,
where the positioning is implemented using 2-D polar
coordinates. The implementation of the positioning
system using Cartesian coordinate system is also possible.
Fig. 1. The scheme of the ion-beam trimming system:
1 – vacuum chamber, 2 – ion beam source,
3 – coordinating system using polar coordinates,
4 – spinning wafer holder, 5 – processing wafer
The surface is treated with small-sized hall-type ion
beam source (Fig. 2), which designed to provide the
ballistic and magnetic focusing of the ion beam [3].
Fig. 2. The ion source used for trimming and the focused
ion beam
It generates conical beam of Ar ions with energy of
300…1500 eV and current of 1…50 mA. The increase of
mailto:bizyukov@mail.ru
111
the ion beam current density in comparison to cylindrical
one is described by coefficient of the beam compression.
For the ion source used for the trimming the compression
coefficient is about 200.
The local etching rate of the functional layers is
regulated by varying the power of the beam. The gas
discharge power in hall-type ion source with anode layer
can be easily regulated by varying the voltage applied to
the anode. Therefore, the software controls the
positioning mechanism and the voltage of the discharge.
The profile of the ion beam intensity was measured by
etching the SiO layers. These layers are of different colors
for different layer thicknesses. Fig. 3 shows typical color
pattern of SiO layer after etching by the focused ion
beam. One can see that the beam intensity is well
concentrated within the diameter of 5 mm.
Fig. 3. The surface etching profile obtained by sputtering
of the SiO layer with Ar ion beam (beam current is of
40 mA and average ion energy is 1000 eV)
The etching rates for the most used materials are
shown in the table (the etching Ar beam with ion current
of 40 mA and average ion energy of 1000 eV):
Material Rate (Å/min)
Al 6125
AlN 1995
SiO2 4400…5200
Al2O3 1365…3000
Si 3500
Si3N4 3000
This ion source also equipped with charge neutralizer,
which utilizes the discharge instead of hot filament. The
discharge is non-self-sustained one and it is magnetron
type using hollow-cathode effect. Its application allows
effective charge neutralization of the ion beam, which
extends the application of the device to processing of the
dielectric materials.
The investigation of surface polishing by trimming
has been performed using the Si wafers with a diameter of
150 mm with aluminum nitride layer. The layer thickness
was 1…1.5 micrometers and it has been deposited by
magnetron physical sputtering.
The process of the ion beam polishing consists of two
stages. At first, the triradial interferometer measures the
thickness of the layer at a number of points. The number
of measurement points can be varied up to 1000,
however, typical number of the points corresponds to
number of chips manufactured on the wafer. The
topography of the functional microelectronics layer is
created by the software basing on the results of
measurements. The topography map is used then to
calculate the parameters of the topography correction: the
position of the ion source and its discharge power. For
example, Fig. 4 shows typical topography of the
aluminum nitride layer deposited by magnetron
sputtering. The parameters of the topography are: average
layer thickness is 8265.4 Å; maximum thickness is
8341.7 Å; minimum thickness 8179.8 Å; the scattering of
the layer thickness due to non-uniformity is 161.8 Å.
The topography of the layer would differ only slightly
if the batch of Si wafers with aluminum nitride deposition
have been produced in the same manufacturing process.
Therefore, one can use average parameters of the
topography for the trimming of the whole batch of the
samples.
Fig. 4. Typical topography of non-uniformity of the
aluminum nitride layer obtained by magnetron
deposition. The gray dots show the points, where the
layer thickness has been measured
Fig.5. Typical topography of the non-uniformity
measured for the layer of aluminum nitride after the
single pass trimming with Ar ion beam
After measurement of the topography, the functional
layer is etched by the trimming, i.e. it is exposed to the
scanning ion beam. The position and the power of the ion
beam is controlled by the software, which set the
trimming parameters according to measured map of the
112
layer topography. Following the trimming process, the
topography of the layer is measured again in the same
way. Fig. 5 shows typical topography of the layer non-
uniformity, obtained after the single pass trimming
process.
The parameters of the topography, obtained in this
particular case, are: average layer thickness is 8172.3 Å;
maximum thickness is 8176.2 Å; minimum thickness
8169.0 Å; the scattering of the layer thickness due to non-
uniformity is 7.2 Å.
Fig. 6. Distribution of number of the FBAR chips
obtained from the same wafer as a function of their
working frequency: 1 – initial; 2 – after single trimming
Therefore, the non-uniformity of the aluminum-nitride
layer has been strongly decreased down to sub-nanometer
scale over the diameter of 150 mm.
The obtained layer can be used as FBAR, and the
thickness value defines the acoustic frequency, generated
by FBAR. Fig. 6 shows the distribution of the number of
FBAR chips, obtained from the same wafer, as a function
of their working frequency. One can see that chips
obtained from the wafer, which has not been processed
with the trimming, have wider spread of the working
frequencies ranging from 1905 to 1930 MHz. In contrast,
the working frequency of the chips obtained from the
trimmed wafer is located mainly around the value of
1916 MHz.
Narrower distribution of the chip frequencies
increases the chip yield per wafer, decreasing their prime
cost and increasing, therefore, the overall economical
efficiency of the chip manufacturing.
3. CONCLUSIONS
The trimming process which uses ion beam etching
for high-precision adjustment of the thickness of
functional microelectronics layers has been investigated.
The layer deposited on the substrate has been processed
by scanning focused ion beam; its position and power is
regulated through the software correspondingly to the
topography of layer non-uniformity. The trimming has
allowed creation of pre-defined topography of the non-
uniformity with accuracy down to 4 Å and decrease the
roughness of the surface. It has been shown that the
surface roughness can be decreased down to sub-
nanometer scale.
REFERENCES
1. B.S. Danilin, V.Yu. Kyrejev. Low temperature plasma
application for the etching and cleaning of materials.
.: “Energoatomizdat”. 1987 (in Russian).
2. Ion sources physics and technologies / Ed. by
J. Brown. .: “ ir”. 1998 (Russian transl.).
3. A.A. Bizyukov , A.I. Girka , K.N. Sereda ,
A.V. Nazarov , E.V. Romaschenko. Hall ion source
with ballistic and magnetic beam focusing // Problems
of Atomic Science and Technology. Series “Plasma
Physics” (14). 2008, 6, p. 174-176.
Article received 15.09.10
. , . , . , . , . , . , .
.
,
.
+/-4 Å
.
. , . , . , . , . , . , .
.
,
.
+/-4 Å .
|