Quasiconformal Extensions and Inner Radius of Univalence by pre-Schwarzian Derivatives of Analytic and Harmonic Mappings

In this paper, we study the criterion for univalence, quasiconformal extensions and inner radius of univalence for locally univalent analytic and harmonic mappings in the complex plane. For locally univalent analytic functions in the unit disk, we give a sufficient condition for univalence and quasi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автори: Hu, Zhenyong, Fan, Jinhua, Wang, Xiaoyuan
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2023
Теми:
Онлайн доступ:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1040
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Репозитарії

Journal of Mathematical Physics, Analysis, Geometry
Опис
Резюме:In this paper, we study the criterion for univalence, quasiconformal extensions and inner radius of univalence for locally univalent analytic and harmonic mappings in the complex plane. For locally univalent analytic functions in the unit disk, we give a sufficient condition for univalence and quasiconformal extensions by pre-Schwarzian derivatives, which generalizes Becker's result. For strongly spirallike domains, we consider the quasiconformal extension and obtain the lower bounds of the inner radius of univalence by pre-Schwarzian derivatives and Schwarzian derivatives. Furthermore, for harmonic mappings in a simply connected domain $\Omega$, we prove that $\Omega$ is a quasidisk if and only if the inner radius of univalence of the domain $\Omega$ by pre-Schwarzian derivatives of harmonic mappings is positive, and we obtain a general sufficient condition for univalence and quasiconformal extensions. Mathematical Subject Classification 2020: 30C62, 30C45, 30C55, 31A05