Quasiconformal Extensions and Inner Radius of Univalence by pre-Schwarzian Derivatives of Analytic and Harmonic Mappings

In this paper, we study the criterion for univalence, quasiconformal extensions and inner radius of univalence for locally univalent analytic and harmonic mappings in the complex plane. For locally univalent analytic functions in the unit disk, we give a sufficient condition for univalence and quasi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2023
Hauptverfasser: Hu, Zhenyong, Fan, Jinhua, Wang, Xiaoyuan
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2023
Schlagworte:
Online Zugang:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1040
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
Beschreibung
Zusammenfassung:In this paper, we study the criterion for univalence, quasiconformal extensions and inner radius of univalence for locally univalent analytic and harmonic mappings in the complex plane. For locally univalent analytic functions in the unit disk, we give a sufficient condition for univalence and quasiconformal extensions by pre-Schwarzian derivatives, which generalizes Becker's result. For strongly spirallike domains, we consider the quasiconformal extension and obtain the lower bounds of the inner radius of univalence by pre-Schwarzian derivatives and Schwarzian derivatives. Furthermore, for harmonic mappings in a simply connected domain $\Omega$, we prove that $\Omega$ is a quasidisk if and only if the inner radius of univalence of the domain $\Omega$ by pre-Schwarzian derivatives of harmonic mappings is positive, and we obtain a general sufficient condition for univalence and quasiconformal extensions. Mathematical Subject Classification 2020: 30C62, 30C45, 30C55, 31A05